Towards a Syntactic Model of Sized Dependent Types

JONATHAN CHAN, University of British Columbia, Canada, jcxz@cs.ubc.ca
Graduate student (MSc.) advised by William J. Bowman

1 TERMINATION CHECKING FOR DEPENDENT TYPE THEORIES

The types-as-propositions paradigm associates certain type theories with formal logical systems,
and consequently types in those theories with propositions in those logics. Furthermore, well-typed
programs are associated with proofs of the corresponding proposition. Many dependent type
theories, for instance, correspond to higher-order logics, and having an automated type checker
means having the ability to automatically verify proofs.

One must be careful, however, not to allow nonterminating programs, because they correspond
to logical inconsistencies, i.e. proofs of falsehood. Additionally, in dependent type checkers where
programs may be evaluated during type checking, failure to rule out nonterminating programs
leads to nonterminating type checking. Contemporary proof assistants based on dependent type
theories, such as Coq, Agda, Lean, Idris, and many more, typically restrict recursive functions to
structurally-recursive ones, where the argument of recursive calls must be syntactically smaller,
peeling away layers of constructors until a base case is reached. Type checkers in these proof
assistants use guard predicates [8] to ensure the restriction.

However, the guard predicate is often too restrictive to accept a variety of recursive functions
for which termination is otherwise evident to the discerning programmer. In particular, functions
recurring on subarguments that have first been passed to other functions known not to add any more
layers of constructors must surely terminate, but since the recursive argument is not syntactically
the subargument, the guard predicate does not hold.

Some type checkers will inline function definitions for the purpose of termination checking,
but this reliance on other function definitions makes code non-modular, and inlining very large
definitions could severely negatively impact type checking performance. Furthermore, the syntactic
nature of the guard predicate makes it sensitive to minor syntactic changes, and a subtle refactoring
of a function inlined in later functions could affect whether those functions even pass termination
checking at all! In short, a syntactic guard predicate goes against good programming practices.

2 TYPE-BASED TERMINATION CHECKING

An alternative to syntactic termination checking is to instead use type-based termination checking,
where if a recursive function type checks without involving any other termination conditions, then
it is guaranteed to terminate. One such method uses sized types [11], where inductive types carry
additional size information. Intuitively, the size is a measure of how many layers a member of
that type contains, and constructors must have a greater size than its subarguments. The types of
functions then carry information about whether it affects the size of its argument, meaning that no
inlining is required — only the type is needed, not the whole definition.

Sized types have been implemented in Agda and can be enabled with the --sized-types
pragma.' It encludes sophisticated features like first-class sizes and bounded size quantification.
There is also a large body of theoretical work on sized types in various type systems, but none of
them quite satisfy all of the desirable features.

!Unfortunately, the implementation is inconsistent due to the presence of an infinite size, which is defined to be the size
strictly greater than all other sizes, including itself.


mailto:jcxz@cs.ubc.ca

Jonathan Chan

o Barthe et al. [5], Grégoire and Sacchini [9], Sacchini [15], and Sacchini [16] introduce and prove
consistent a lineage of Calculi of (Co)Inductive Constructions (CIC) with sized types, but only
prenex size quantification is possible: one cannot, for instance, pass around a higher-order
function quantifying over a size.

o Abel [1], Abel [2], and Abel and Pientka [3] introduce not only higher-rank size quantification but
also bounded size quantification, the latter of which eliminates the need for complex monotonicity
checks or syntactic approximations thereof. However, these type systems extend System F,,
rather than a dependent type theory.

o Abel et al. [4] prove normalization of a higher-rank sized dependent type theory with naturals,
but without bounded size quantification.

In ongoing work, I seek to prove the logical consistency of Sized CC,,, a higher-rank sized
dependent type theory with bounded size quantification. Rather than using very involved set-
theoretic methods like in Sacchini’s dissertation [15] or the normalization by evaluation technique
in Abel et al. [4] which requires a typed definitional equality judgement in the type theory, I instead
define a syntactic model [6] into Extensional CIC (CICg) [14]. That is, I need to define a compiler
from Sized CC,, to CICg, then prove that it is type-preserving: given some well-typed term in Sized
CC,, if both the term and its type are translated to CICg, then the translated term should also be
well typed against the translated type. Because CICg is known to be consistent, and an inconsistency
in Sized CC,, implies the existence of an inconsistency in CICg, via the type-preserving compilation,
inconsistency of Sized CC,, would be a contradiction.

3 SYNTACTIC MODEL OF SIZED CC,,

Sized CC,, is a Generalized Calclulus of Constructions with definitions (CCw) [10] — that is, a
Calculus of Constructions with untyped equality, a cumulative universe hierarchy, and let expres-
sions — extended with bounded and unbounded size quantification, abstraction, and application, as
well as size expressions consisting of size variables, a base size, and a size successor operation. I
further add naturals and W types only, but these should scale directly to inductive types in general.

In Sized CC,,, the natural type and W types are parametrized by some size, and their constructors
quantify over a bounded size representing the strictly smaller size of recursive subarguments. In
CICg, I define a Size inductive type representing the sizes in Sized CC,,, and an indexed inductive
type _<_ on Size representing the ordering relation used in bounded quantification and abstraction.
The natural type and W types then compile to corresponding inductive types literally parametrized
by Size, and whose constructors take proofs of strict inequality of two Sizes.

The majority of the remaining translation is straightforward, especially for universes, functions,
let expressions, and case expressions. Bounded size quantification and abstraction correspond to
quantification and abstraction over a Size and an inequality, and correspondingly for unbounded
ones. But what about fixpoints?

The typing rule for fixpoints in Sized CC,, has as premise the well-typedness of its body in
an environment where the fixpoint itself is in scope, but quantifying over a smaller size. The
key insight is that fixpoints now correspond to well-founded induction over sizes, rather than
structural induction. To show that well-founded induction indeed holds for Size, I first show
that all Sizes satisfy an accessibility predicate [13]; well-founded induction then follows by a
structurally-inductive proof over the predicate. Fixpoints in Sized CC,, then translate immediately
to applications of well-founded induction.

Now that a translation from Sized CC,, to CICg is established, I show that it is type preserving.
Because Sized CC,, uses an untyped equality judgement, I can use standard techniques for showing



Towards a Syntactic Model of Sized Dependent Types

type preservation [7]. An important proof detail is that equality reflection (and therefore exten-
sionality) is required to show an n-equivalence rule for case expressions and to show that proofs
of accessibility are equal, which are properties used to prove that the translations of an applied
fixpoint and its reduction in Sized CC,, are definitionally equal in CICg.

4 STATUS AND FUTURE WORK

The work is not yet done; there remain unresolved problems with the model, and additional features
to add that one would expect from a practically-useable sized dependent type theory.

4.1 Universe Levels and Size

To be able to assign sizes to general inductive types such as W types, which conceptually can
have transfinitely many recursive subarguments, Size itself must be able to express the same
transfinitivity. Therefore, its inductive definition in CICg mirrors that of Brouwer ordinals [12],
although the domain of the function in the size corresponding to the limit ordinal is an arbitrary
type A rather than merely the usual natural numbers. Size itself must then live in a universe higher
than that of A, according to the usual well-formedness restrictions on inductive types.

Recall that the natural type and W types in Sized CC,, are parametrized by Size. Given a W
type with type parameters A : Type, and B : A — Type,, the type used in limit sizes for the W type
would also be A. Meanwhile, the naturals aren’t transfinite, so we simply have A := L : Type,, the
uninhabited type. Unfortunately, since Size itself would then live in Type,,; and Type;, respectively,
so must the W type and the natural type, rather than in Type, and Type, as one would expect.
Intuitively, Size itself must be “large enough” (in the type universe sense) to include all sizes of
naturals and elements of W types, which makes it “too large” to live in the same universe as what
it should include.

One unsatisfactory solution would be to accept the natural type and W types living in larger
universes than they normally would in an unsized dependent type theory. Another solution would
be to parametrize Size itself by the limit size’s type A, which would allow it to live in the same
universe as A. However, the translation of sizes and size quantifications and abstractions would
have an underdetermined parameter, and sizes used for one inductive could not be used for another.

4.2 The Infinite Size

In nearly all past work on sized types, including the Agda implementation, there is a notion of an
infinite size oo that is strictly larger than all sizes, including itself: the relation co < co holds. Sized
CC,, does not have the infinite size, because this property would make sizes no longer well-founded,
undermining all efforts to interpret fixpoints as applications of well-founded induction. In fact, this
is why sized types are inconsistent in Agda: dependent types make it possible to internalize the
order on sizes as an inductive type within Agda itself, from which well-foundedness can be proven,
yielding falsehood when combined with co < eo. Finding a suitable replacement for uses of co that
capture its convenience while retaining consistency remains an open problem. One possibility is to
use an existentially size-quantified inductive type in place of the co-sized inductivebut it appears
this might require a nonconstructive axiom that does not compute.

4.3 Coinductive Types

Aside from termination checking, sized types are also used for productivity checking of corecursive
definitions, making reasoning about corecursive constructions much easier. If Sized CC,, is indeed
consistent, I expect that extending the language and the proofs to include sized coinductive types
would be relatively straightforward.



Jonathan Chan

REFERENCES

[10]
[11]

[12]

[13]

[14]

[15]

[16]

Andreas Abel. 2006. Type-based termination: a polymorphic lambda-calculus with sized higher-order types. Theses.
University of Munich. http://www.cse.chalmers.se/~abela/diss.pdf

Andreas Abel. 2012. Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types.
Electronic Proceedings in Theoretical Computer Science 77 (Feb 2012), 1-11. https://doi.org/10.4204/eptcs.77.1
Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional
Programming 26 (2016), e2. https://doi.org/10.1017/50956796816000022

Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017. Normalization by Evaluation for Sized Dependent Types.
Proc. ACM Program. Lang. 1, ICFP, Article 33 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110277

Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. 2006. CIC™ : Type-Based Termination of Recursive
Definitions in the Calculus of Inductive Constructions. In Logic for Programming, Artificial Intelligence, and Reasoning,
Proceedings (Lecture Notes in Artificial Intelligence, Vol. 4246), Hermann, M and Voronkov, A (Ed.). Springer-Verlag
Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany, 257-271. https://doi.org/10.1007/11916277_18

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory.
In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs. ACM, Paris, France, 182-194.
https://doi.org/10.1145/3018610.3018620

William J. Bowman. 2018. Compiling with Dependent Types. Theses. Northeastern University. https://doi.org/10.17760/
D20316239

Eduardo Giménez. 1995. Codifying guarded definitions with recursive schemes. In Types for Proofs and Programs, Peter
Dybjer, Bengt Nordstrom, and Jan Smith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 39-59.

Benjamin Grégoire and Jorge Luis Sacchini. 2010. On Strong Normalization of the Calculus of Constructions with
Type-Based Termination. In Logic for Programming, Artificial Intelligence, and Reasoning, Christian G. Fermiiller and
Andrei Voronkov (Eds.). Vol. 6397. Springer Berlin Heidelberg, Berlin, Heidelberg, 333-347. https://doi.org/10.1007/978-
3-642-16242-8_24 Series Title: Lecture Notes in Computer Science.

Robert Harper and Robert Pollack. 1991. Type checking with universes. Theoretical Computer Science 89, 1 (Oct. 1991),
107-136. https://doi.org/10.1016/0304-3975(90)90108-T

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the correctness of reactive systems using sized types.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 96).
Association for Computing Machinery, New York, NY, USA, 410-423. https://doi.org/10.1145/237721.240882
Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. 2021. Connecting Constructive Notions of Ordinals in
Homotopy Type Theory. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS
2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 202), Filippo Bonchi and Simon J. Puglisi (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 70:1-70:16. https://doi.org/10.4230/LIPIcs.
MFCS.2021.70

Bengt Nordstrom. 1988. Terminating general recursion. BIT Numerical Mathematics 28, 3 (1988), 605-619. https:
//doi.org/10.1007/BF01941137

Nicolas Oury. 2005. Extensionality in the Calculus of Constructions. In Theorem Proving in Higher Order Logics, Joe
Hurd and Tom Melham (Eds.). Vol. 3603. Springer Berlin Heidelberg, Berlin, Heidelberg, 278-293. https://doi.org/10.
1007/11541868_18 Series Title: Lecture Notes in Computer Science.

Jorge Luis Sacchini. 2011. On type-based termination and dependent pattern matching in the calculus of inductive
constructions. Theses. Ecole Nationale Supérieure des Mines de Paris. https://pastel.archives-ouvertes.fr/pastel-
00622429

Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Definitions in the Calculus of Constructions. In 2013
28TH Annual IEEE/ACM Symposium on Logic in Computer Science (LICS) (IEEE Symposium on Logic in Computer Science).
IEEE, 345 E 47th St., New York, NY 10017 USA, 233-242. https://doi.org/10.1109/LICS.2013.29


http://www.cse.chalmers.se/~abela/diss.pdf
https://doi.org/10.4204/eptcs.77.1
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/3110277
https://doi.org/10.1007/11916277_18
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.17760/D20316239
https://doi.org/10.17760/D20316239
https://doi.org/10.1007/978-3-642-16242-8_24
https://doi.org/10.1007/978-3-642-16242-8_24
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1145/237721.240882
https://doi.org/10.4230/LIPIcs.MFCS.2021.70
https://doi.org/10.4230/LIPIcs.MFCS.2021.70
https://doi.org/10.1007/BF01941137
https://doi.org/10.1007/BF01941137
https://doi.org/10.1007/11541868_18
https://doi.org/10.1007/11541868_18
https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429
https://doi.org/10.1109/LICS.2013.29

	1 Termination Checking for Dependent Type Theories
	2 Type-Based Termination Checking
	3 Syntactic Model of Sized CCω
	4 Status and Future Work
	4.1 Universe Levels and Size
	4.2 The Infinite Size
	4.3 Coinductive Types

	References

