
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Practical Sized Typing for Coq

ANONYMOUS AUTHOR(S)

Termination of recursive functions and productivity of corecursive functions are important for maintaining
logical consistency in proof assistants. However, contemporary proof assistants, such as Coq, rely on frag-
ile syntactic criteria that prevent users from easily writing obviously terminating or productive functions,
such as quicksort. This is troublesome, since there exist theories for type-based termination and productivity
checking.

In this paper, we present a design and implementation of sized type checking and inference for Coq. We
extend past work on sized types for the Calculus of (Co)Inductive Constructions (CIC) to support definitions,
and extend the sized type inference algorithm to support completely unannotated CIC terms. This allows
our design to maintain complete backward compatibility with existing Coq developments. We provide an
implementation that extends the Coq kernel with optional support for sized types.

1 INTRODUCTION
Proof assistants based on dependent type theory rely on the termination of recursive functions and
the productivity of corecursive functions to ensure two important properties: logical consistency,
so that it is not possible to prove false propositions; and decidability of type checking, so that
checking that a program proves a given proposition is decidable.

In proof assistants such a Coq, termination and productivity are enforced by a guard predicate on
fixpoints and cofixpoints respectively. For fixpoints, recursive calls must be guarded by destructors;
that is, they must be performed on structurally smaller arguments. For cofixpoints, corecursive
callsmust be guarded by constructors; that is, theymust be the structural arguments of a constructor.
The following examples illustrate these structural conditions.
Fixpoint plus n m : nat :=

match n with
| O => m
| S p => S (plus p m)
end.

Variable A : Type.
CoFixpoint const a : Stream A := Cons a (const a).

In the recursive call to plus, the first argument p is structurally smaller than S p, which is the
form of the original first argument n. Similarly, in const, the constructor Cons is applied to the
corecursive call.

The actual implementation of the guard predicate extends beyond the guarded-by-destructors
and guarded-by-constructors conditions to accept a larger set of terminating and productive func-
tions. In particular, function calls will be unfolded (i.e., inlined) in the bodies of (co)fixpoints as
needed before checking the guard predicate. This has a few disadvantages: firstly, the bodies of
these functions are required, which hinders modular design; and secondly, the (co)fixpoint bodies
may become very large after unfolding, which can decrease the performance of type checking.

Furthermore, changes in the structural form of functions used in (co)fixpoints can cause the
guard predicate to reject the program even if the functions still behave the same. The following
simple example, while artificial, illustrates this structural fragility.

1

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

Fixpoint minus n m :=
match n, m with
| O, _ => n
| _, O => n
| S n', S m' => minus n' m'
end.

Fixpoint div n m :=
match n with
| O => O
| S n' => S (div (minus n' m) m)
end.

If we replace | O, _ => n with | O, _ => O in minus, the behaviour does not change, but O
is not a structurally smaller term of n in the recursive call to div, so div no longer satisfies the
guard predicate. The acceptance of div then depends on a function external to it, which can lead
to difficulty in debugging for larger programs. Furthermore, the guard predicate is unaware of the
obvious fact that minus never returns a nat larger than its first argument, which the user would
have to prove in order for div to be accepted with our alternate definition of minus.

An alternative to guard predicates for termination and productivity enforcement uses sized types.
In essence, the (co)inductive type of an object is annotated with a size annotation, which pro-
vides some information about the size of the object. In this paper, we follow a simple size algebra:
𝑠 B 𝜐 | 𝑠 | ∞, where 𝜐 ranges over size variables. If the argument to a constructor has size 𝑠 , then
the fully-applied constructor would have a successor size 𝑠 . For instance, the nat constructors
follow the below rules:

Γ ⊢ O : Nat𝑠
Γ ⊢ 𝑛 : Nat𝑠

Γ ⊢ S 𝑛 : Nat𝑠

Termination and productivity checking is then simply a type checking rule that uses size infor-
mation. For termination, the recursive call must be done on an object with a smaller size, so when
typing the body of the fixpoint, the reference to itself in the typing context must have a smaller
size. For productivity, the returned object must have a larger size than that of the corecursive call,
so the type of the body of the cofixpoint must be larger than the type of the reference to itself in
the typing context. In short, they both follow the following (simplified) typing rule, where 𝜐 is an
arbitrary fresh size variable annotated on the inductive types, and 𝑠 is an arbitrary size expression
as needed.

Γ(𝑓 : 𝑡𝜐) ⊢ 𝑒 : 𝑡𝜐

Γ ⊢ (co)fix 𝑓 : 𝑡 := 𝑒 : 𝑡𝑠

We can then assign minus the type Nat𝜄 → Nat → Nat𝜄 . The fact that we can assign it a
type indicates that it will terminate, and the 𝜄 annotations indicate that the function preserves the
size of its first argument. Then div uses only the type of minus to successfully type check, not
requiring its body. Furthermore, being type-based and not syntax-based, replacing | O, _ => n
with | O, _ => O does not affect the type of minus or the typeability of div. Similarly, some other
(co)fixpoints that preserve the size of arguments in ways that aren’t syntactically obvious may be
typed to be size preserving, expanding the set of terminating and productive functions that can be
accepted.

Unfortunately, past work on sized types [Barthe et al. 2006; Sacchini 2011] in the Calculus of
(Co)Inductive Constructions (CIC), Coq’s underlying calculus, have some practical issues:

• They require nontrivial backwards-incompatible additions to the surface language. These in-
clude annotations that mark the positions of (co)recursive and size-preserved types, and polar-
ity annotations on (co)inductive definitions that describe how subtyping works with respect
to parameters.

• They require the (co)recursive arguments of (co)fixpoints to have literal (co)inductive types.
That is, the types cannot be expressions that convert to (co)inductive types.

2

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

• Their languages do not support local and global definitions, which Coq includes.

In this paper, we present CIĈ∗ (“CIC-star-hat”), a calculus for representing the core of Coq with
sized types, and an inference algorithm from CIC to CIĈ∗. It is an extension of CIĈ [Barthe et al.
2006] and CIĈ [Sacchini 2011] that resolves the issues above. We also have a fork of Coq available
in the anonymous supplementary material that implements the size inference algorithm and size-
based termination and productivity checking of CIC∗̂. To maximize backward compatibility, the
surface language is completely unchanged, and the existing guard condition and sized types can
be enabled or disabled independently, or used in conjunction. Sized typing can be turned on with a
flag that is off by default for safe and gradual testing of the new kernel. We are currently working
with the Coq development team to merge the work into Coq.

The remainder of this paper is organized as follows. We begin in Section 2 with a high-level
overview of the design of CIC∗̂, its role in Coq, and the main lessons from our design.We formalize
the calculus CIĈ∗ in Section 3. In Section 4, we present a size inference algorithm from CIC terms
to sized CIC∗̂ terms that details how we annotate the types of (co)fixpoints, how we deal with the
lack of polarities, and how definitions are supported, and termination and productivity checking.
Section 5 states some of the metatheoretical properties of CIC∗̂ that have been proven or remain
to be proven. Finally, we briefly compare with the past work on sized types for CIC and related
languages in Section 6.

2 OVERVIEW
Our goal in the design of CIC∗̂ is to balance backward compatibility with performance. We could
achieve backward compatibility easily by just using an extremely expressive size algebra, but we
could never implement an efficient type checker. Similarly, we could easily add sized types to Coq
with efficient checking if we just make the users and the Coq developers rewrite all their code
in our cool new annotated language. Both of these are impractical. Instead, we try to thread the
needle.

Our first design decision is complete backward compatibility: the Coq user must not be required
to provide new annotations on existing code, and ideally should be able to get the advantages
of sized typing in all new code. If we expect the user to reuse any standard library data types
with sized types, this means that we need a size inference algorithm, which takes ordinary Coq
programs, infers size annotations as needed, uses sizes during type checking, and returns ordinary
Coq programs.

For performance, we want size inference to be local — size variables and constraints should be
independent from one global declaration to another. In theory, we have an infinite set of unique
size variables that can be summoned at will, but in practice, each variable needs to be generated and
tracked, consuming time and space. Similarly, we could add an unrestricted number of constraints,
but as we discuss in Section 4, the time complexity of size inference is proportional to the number
of constraints. By keeping size inference local, the state of size information and size constraint sets
can be kept smaller.

Below is a high-level view of our type checking process. The pipeline is local, i.e., each top-level
definition in a Coq program is run through this pipeline in turn.

CIC ≡ bare CIC∗̂ inference−−−−−−→ sized CIC∗̂ erasure−−−−−→ limit CIĈ∗

The first pass elaborates Coq code into a fully type-annotated CIC term. This is a standard pass
for Coq which we will not discuss further. Naturally, the CIC term will have no size annotations;
we also call this bare CIĈ∗.

3

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

Next, we perform size inference on bare CIC∗̂ to obtain sized CIĈ∗. There are three different
tasks in size inference: (1) annotate all (co)inductive types with fresh size variables; (2) during
type checking, whenever two terms are compared, follow subtyping rules to generate a set of
constraints between their size annotations; and (3) when type checking a (co)fixpoint, check that
the collected constraints are satisfiable. By representing the constraints as a weighted directed
graph, this amounts to checking for negative cycles.

The final step in the pipeline is to erase unnecessary size annotations from sized CIĈ∗ to obtain
limit CIĈ∗ by replacing size annotations with ∞. This is the same strategy adopted in a prototype
implementation of CIĈ [Sacchini 2015a].

However, not all size annotations are erased. We preserve annotations for each size-preserving
(co)recursive function, which is a key feature of CIĈ∗ that enables additional expressiveness in
termination and productivity checking. Consider, for example, an inductive list of type List𝑟 𝐴
and a coinductive stream of type Stream𝑠 𝐴. The intuitive notion of the size 𝑟 is the length of
the list. Since every list of 𝐴s is an inhabitant of List∞ 𝐴, we can imagine that the inhabitants of
List𝑟 𝐴 are lists of length 𝑟 or shorter. Dually, the inhabitants of Stream𝑠 𝐴 are streams of “length”
𝑠 or “longer”. From the perspective of productivity, these are streams that can produce at least 𝑠
elements. A recursive function on lists that is size-preserving, then, is one that returns a list of
equal or smaller size, while a size-preserving corecursive function on streams is one that returns a
stream of equal or larger size. For instance, a map function over lists or streams is size-preserving,
since it does not modify their lengths. Whether a (co)recursive function is size-preserving or not is
determined during the size inference step, which annotates the types of (co)fixpoints with position
annotations ∗ to mark the (co)recursive argument type as well as any size-preserving return types.
These annotations are not erased.

This alone is not enough to express size-preservation of global declarations. A globally-defined
(co)fixpoint is annotated with the definition’s type, which doesn’t expose the size-preservedness
expressed by the (co)fixpoint’s type. Therefore, we also annotate the types of such definitions with
global annotations 𝜄 to mark what would have been position annotations.

The examples filter and qsort below demonstrate what limit CIĈ∗ programs look like after
erasure. During the inference step for qsort, the global annotations on filter are substituted by
the same size variable, which tells qsort that filter preserves the size of the recursive argument,
allowing us to use it in the recursive call. Global annotations then are essentially a limited form of
size polymorphism with one universal quantifier, which is sufficient to express size preservation.

Def filter: (Nat∞ → Bool∞) →
List𝜄 Nat∞ → List𝜄 Nat∞ B
fix filter': (Nat → Bool) →
List∗ Nat → List∗ Nat B
𝜆p: Nat → Bool. 𝜆l: List Nat.
case l return List Nat of
| Nil ⇒ Nil
| Cons ⇒ 𝜆hd: Nat. 𝜆tl: List Nat.

if p hd
then Cons Nat hd (filter' p tl)
else (filter' p tl)

end.

(* [append], [gtb], [leb] omitted *)
Def qsort: List𝜄 Nat∞ → List∞ Nat∞ B
fix qsort': List∗ Nat →
List Nat B 𝜆l : List Nat.
case l return List Nat of
| Nil ⇒ Nil
| Cons ⇒ 𝜆hd: Nat. 𝜆tl: List Nat.
append
(qsort' (filter (gtb hd) tl))
(Cons Nat hd
(qsort' (filter (leb hd) tl)))

end.

There is a second problem with erasure. Consider the following CIĈ∗ program.

4

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Def N: Type B Nat∞.
Def add: N𝜄 → N → N B
let id: N → N B 𝜆n: N. n in
fix add': N∗ → N → N B 𝜆n: N. 𝜆m: N.

case n return N of
| O ⇒ m
| S ⇒ 𝜆n': N. S (add' (id n') m)
end.

N will reduce to Nat during type checking, but what size should Nat then have? It cannot have
the limit size ∞ left after erasure; this would disallow us from using id in the recursive call to
add', since termination checking requires that id preserve the size of n' and not return some
larger Nat∞. However, we cannot not erase, either, leaving Nat with some arbitrary fixed size
annotation, since this makes add’s type size-preserving when add is not. To handle this example,
each instance of N should have its own fresh size annotation; during reduction, this becomes a
size-annotated Nat.

We support this kind of program in CIĈ∗ by treating global definitions essentially as implicitly
abstracting over size expressions. Each instance of a variable bound to a definition needs to be
instantiated with the correct number of size expressions, and so carries a vector of size expressions
whose length is the number of∞ annotations in the body after erasure. Like size annotations, these
new vector annotations are only found in sized CIĈ∗.

A final design decision remains to enable backward compatibility. Our sized typing enables
many new programs to type check easily, such as qsort above, but our limited sized algebra means
that there also exist programs that pass guard checking but not our sized typing pipeline. Guard
checking unfolds definitions, which is bad for modularity and performance, but enables gcd as
defined in the Coq standard library to type check using guard checking. On the other hand, gcd
cannot be type checked using sized types with our size algebra1. We could enrich the size algebra,
but as we discuss in Section 6, this greatly increases the time complexity of size inference. To take
advantage of both schemas, our implementation enables each to be used simultaneously, so the
type checker accepts a program if it passes either sized typing or guard checking:
Set Guard Checking. Set Sized Typing.

3 CIC∗̂
In this section, we present CIĈ∗, a core calculus for sized typing in Coq.

3.1 Syntax
Figure 1 presents the syntax of CIC∗̂, whose terms are parameterized over a set of annotations 𝛼 ,
which indicate the kind of annotations (if any) that appear on the term; details will be provided
shortly. We draw variables from several distinct sets of variable names:X for term variable names,
V for size variable names, I for (co)inductive type names, and C for (co)inductive constructor
names. The brackets ⟨·⟩ delimit a vector of some comma-separated constructions. For instance, if
𝐶,𝑇 are nonterminals, then ⟨𝐶 ⇒ 𝑇 ⟩ expands to ⟨𝐶 ⇒ 𝑇, . . . ,𝐶 ⇒ 𝑇 ⟩. We use𝑚 and 𝑛 as well as
𝑖, 𝑗, 𝑘, ℓ as metavariables for positive naturals used in indexing; note that we use 1-based indexing.

CIĈ∗ resembles the usual CIC, but there are some important differences compared to CIC and
compared to past work CIĈ and CIĈ :

• Inductive types carry annotations that represent their size, e.g., Nat𝜐 . This is the defining
feature of sized types. They can also have position annotations, e.g., Nat∗, which mark the

1https://github.com/coq/coq/wiki/CoqTerminationDiscussion#sized

5

https://github.com/coq/coq/wiki/CoqTerminationDiscussion#sized

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

𝑆 F V | V∗ | 𝑆 | ∞ size expressions
𝑈 F Prop | Set | Type𝑛 set of universes

𝑇 [𝛼] F
| 𝑈 universes

| X | X ⟨𝛼 ⟩ variables

| 𝜆X : 𝑇 ◦.𝑇 [𝛼] abstractions

| 𝑇 [𝛼]𝑇 [𝛼] applications

| ΠX : 𝑇 [𝛼] .𝑇 [𝛼] function types

| let X : 𝑇 ◦ B 𝑇 [𝛼] in 𝑇 [𝛼] let expressions

| I𝛼 (co)inductive types

| C (co)ind. constructors

| case𝑇 ◦ 𝑇 [𝛼] of ⟨C ⇒ 𝑇 [𝛼]⟩ case expressions

| fix⟨𝑛⟩,𝑚 ⟨X : 𝑇 ∗ B 𝑇 [𝛼]⟩ fixpoints

| cofix𝑚 ⟨X : 𝑇 ∗ B 𝑇 [𝛼]⟩ cofixpoints

Fig. 1. Syntax of CIC∗̂ terms with annotations 𝛼

𝑇 ◦ F 𝑇 [{𝜖}] bare terms 𝑇∞ F 𝑇 [{∞}] limit terms
𝑇 ∗ F 𝑇 [{𝜖, ∗}] position terms 𝑇 𝜄 F 𝑇 [{∞, 𝜄}] global terms
𝑇 F 𝑇 [𝑆] sized terms

Fig. 2. Kinds of annotated terms

type as that of the recursive argument of a fixpoint or the return type of a cofixpoint, as well
as other size-preserving types. This is similar to struct annotations in Coq that specify the
structurally-recursive argument.

• Variables may have a vector of annotations, e.g., 𝑥 ⟨𝜐1,𝜐2 ⟩ . If the variable is bound to a term
containing (co)inductive types, we assign the annotations to each (co)inductive type during re-
duction. For instance, if 𝑥 is defined by 𝑥 : Set B List Nat, then 𝑥 ⟨𝜐1,𝜐2 ⟩ reduces to List𝜐1 Nat𝜐2 .

• Definitions are supported, in constrast to CIĈ and CIĈ . This reflects the actual structure
in Coq’s kernel.

• Mutual (co)fixpoints are treated explicitly. In fixpoints, ⟨𝑛𝑘⟩ is a vector of indices indicating
the positions of the recursive arguments in each fixpoint type, and𝑚 picks out the𝑚th (co)-
fixpoint in the vector of mutual definitions.

Figure 2 lists shorthand for the kinds of annotated terms that we use, with 𝜖 indicating a lack
of annotations. From CIĈ and CIĈ , we have bare terms, which are necessary for subject reduc-
tion [Sacchini 2011]; position terms, which have asterisks to mark the types in (co)fixpoint types
with at most (for fixpoints) or at least (for cofixpoints) the same size as that of the (co)recursive
argument; and sized terms, used for termination and productivity checking. We also have limit
terms, which occur after erasure, and global terms, which occur in the types of global declarations
similarly to how position terms occur in (co)fixpoint types. These terms correspond to bare, sized,
and limit CIC∗̂: we begin with user-provided declarations as bare terms, produce size and posi-
tion annotations during size inference while verifying termination and productivity, and finish by

6

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

𝐷 [𝛼] F local declarations
| X : 𝑇 [𝛼] local assumption

| X : 𝑇 [𝛼] B 𝑇 [𝛼] local definition

𝐷𝐺 F global declarations
| Assum X : 𝑇∞. global assumption

| Def X : 𝑇 𝜄 B 𝑇∞. global definition

Γ F □ | Γ(𝐷 [𝑆]) local environments
Γ𝐺 F □ | Γ𝐺 (𝐷𝐺) global environment

Δ[𝛼] F □ | Δ[𝛼] (X : 𝑇 [𝛼]) assumption environments

Fig. 3. Declarations and environments

𝑒, 𝑎, 𝑏, 𝑝, 𝑞, ℘ ∈ 𝑇 [𝛼] (expressions) 𝜏,𝜐 ∈ V 𝑤 ∈ 𝑈

𝑡,𝑢, 𝑣 ∈ 𝑇 [𝛼] (types) 𝑉 ∈ P(V) 𝐼 ∈ I
𝑓 , 𝑔, ℎ, 𝑥,𝑦, 𝑧 ∈ X 𝑟, 𝑠 ∈ 𝑆 𝑐 ∈ C

Fig. 4. Metavariables

(co)dom(Δ) ↦→ 𝑥 (co)domain of assumuptions
𝑒 𝑎 ↦→ ((𝑒 𝑎1) . . .) 𝑎𝑛 multiple application

𝑡 → 𝑢 ↦→ Π_ : 𝑡 . 𝑢 nondependent function type
(𝑥 : 𝑡) → 𝑢 ↦→ Π𝑥 : 𝑡 . 𝑢 dependent function type

ΠΔ. 𝑡 ↦→ Π𝑥1 : 𝑡1 Π𝑥𝑛 : 𝑡𝑛 . 𝑡 product from assumptions
SV(𝑒1, 𝑒2) ↦→ SV(𝑒1) ∪ SV(𝑒2) size variables of terms

SV(𝑎) ↦→ SV(𝑎1) ∪ · · · ∪ SV(𝑎𝑛) size variables of terms
SV(Δ) ↦→ SV(𝑡) size variables of assumptions
where 𝑎 = 𝑎1 . . . 𝑎𝑛

Δ = (𝑥1 : 𝑡1) . . . (𝑥𝑛 : 𝑡𝑛)

Fig. 5. Syntactic sugar for terms and metafunctions

erasing sized terms to limit and global terms.

𝑇 ◦ inference−−−−−−→ 𝑇,𝑇 ∗ erasure−−−−−→ 𝑇∞,𝑇 𝜄

Figure 3 illustrates the difference between local and global declarations and environments, a
distinction also in the Coq kernel. Local assumptions and definitions occur in abstractions and
let expressions, respectively, while global ones are declared at the top level. Local declarations
and assumption environments are parameterized over a set of annotations 𝛼 ; we use the same
shorthand for environments as for terms.

Figure 4 lists the metavariables we use in this work, which may be subscripted by 𝑛,𝑚, 𝑖, 𝑗, 𝑘, ℓ ,
or natural number literals, or superscripted by ′. We use the overline · to denote a sequence of
some construction; if it contains an index, the sequence spans the range of the index, usually given

7

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

IndF Δ ⊢ ⟨I X : ΠΔ∞.𝑈 ⟩ B ⟨C : ΠΔ∞.I X 𝑇∞⟩
Σ F □ | Σ(Ind)

Δ𝑝 ⊢ ⟨𝐼𝑖 dom(Δ𝑝) : ΠΔ𝑖 .𝑤𝑖⟩ B ⟨𝑐 𝑗 : ΠΔ 𝑗 . 𝐼 𝑗 dom(Δ𝑝) 𝑡 𝑗 ⟩

Fig. 6. (Co)inductive definitions and signature

implicitly. For instance, given 𝑖 inductive types, 𝐼𝑠𝑘
𝑘

= 𝐼𝑠11 . . . 𝐼𝑠𝑖𝑖 . Notice that this is not the same
as an index outside of the overline, such as in 𝑎𝑘 , which represents the 𝑘th sequence of terms 𝑎.
Indices also appear in syntactic vectors; for example, given a case expression with 𝑗 branches, we
write ⟨𝑐ℓ ⇒ 𝑒ℓ⟩ for the vector ⟨𝑐1 ⇒ 𝑒1, . . . , 𝑐 𝑗 ⇒ 𝑒 𝑗 ⟩.

Figure 5 defines syntactic sugar on terms, most of which is standard.
We use 𝑡 [𝑥 B 𝑒] to denote the term 𝑡 with free variable 𝑥 substituted by expression 𝑒 , and

𝑡 [𝜐 B 𝑠] to denote the term 𝑡 with size variable 𝜐 substituted by size expression 𝑠 . Additionally,
we use 𝑡 [∞𝑖 B 𝑠𝑖] to denote the substitutions of all ∞ annotations in 𝑡 by the size expressions 𝑠𝑖
in left-to-right order. The substitution is valid only if the number of ∞ annotations in 𝑡 is same as
the length of 𝑠𝑖 .

3.1.1 Mutual (Co)Inductive Definitions. Thedefinition of mutual (co)inductive types and their con-
structors are stored in a global signature Σ as defined in Figure 6. (Typing judgements are param-
eterized by all three of Σ, Γ𝐺 , Γ.) A mutual (co)inductive definition contains:

• Δ𝑝 , the parameters of the (co)inductive types and the constructors;
• 𝐼𝑖 , the names of the (co)inductive types;
• Δ𝑖 , the indices (or arguments) of 𝐼𝑖 ;
• 𝑤𝑖 , the universes to which 𝐼𝑖 belongs;
• 𝑐 𝑗 , the names of the constructors;
• Δ 𝑗 , the arguments of 𝑐 𝑗 ;
• 𝐼 𝑗 , the (co)inductive types of the fully-applied constructors; and
• 𝑡 𝑗 , the indices of 𝐼 𝑗 .
Given a constructor 𝑐 𝑗 , we will often refer to 𝐼 𝑗 as simply that constructor’s inductive type.

Note that 𝐼 𝑗 is not the 𝑗th inductive type in the definition, but rather the specific inductive type
associated with the 𝑗th constructor. Wewould more precisely write 𝐼𝑘 𝑗 , to indicate that we pick out
the 𝑘 𝑗 th inductive type, where the specific 𝑘 depends on 𝑗 , but we forgo this notation for clarity.

As an example, the usual Vector type would be defined in the language as (omitting □ in
nonempty environments and brackets in the syntax for singleton vectors):

(𝐴 : Type) ⊢ Vector 𝐴 : Nat → Type B ⟨VNil : Vector 𝐴 O,
VCons : (𝑛 : Nat) → 𝐴 → Vector 𝐴 𝑛 → Vector 𝐴 (S 𝑛)⟩.

As with mutual (co)fixpoints, we treat mutual (co)inductive definitions explicitly. Furthermore,
in contrast to CIĈ and CIĈ , our definitions do not have a vector of polarities. In those works, each
parameter has an associated polarity that tells us whether the parameter is covariant, contravari-
ant, or invariant with respect to the (co)inductive type during subtyping. Since Coq’s (co)inductive
definitions do not have polarities, we forgo them so that our type checker can work with existing
Coq code without modification. Consequently, we will see that the parameters of (co)inductive
types are always invariant in the subtyping Rule st-app.

As usual, the well-formedness of (co)inductive definitions depends on certain syntactic con-
ditions such as strict positivity. The conditions are defined in the supplementary material and
reproduced in Appendix B. We refer the reader to clauses I1–I9 in Sacchini [2011], clauses 1–7 in

8

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

(𝑥 : 𝑡 B 𝑒) ∈ Γ

Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ ▷𝛿 |𝑒 |∞ [∞𝑖 B 𝑠𝑖]
𝛿-local

(Def 𝑥 : 𝑡 B 𝑒.) ∈ Γ𝐺

Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ ▷Δ 𝑒 [∞𝑖 B 𝑠𝑖]
Δ-global

Fig. 7. Reduction rules for local and global definitions

Barthe et al. [2006], and The Coq Development Team [2020] for further details. Generally, we can
assume that non-nested (co)inductive definitions that are valid in Coq are valid in CIĈ∗ as well.

Note that nested (co)inductive types are not supported in CIĈ∗, as they break subject reduction
(see Section 5 for details). This restriction manifests in the definition of strict positivity.

3.1.2 Metafunctions. We declare the following metafunctions:
• FV : 𝑇 [𝛼] → P(X) returns the set of free term variables in the given term;
• SV : 𝑇 → P(V) returns the set of size variables in the given sized term;
• ⌊·⌋ : 𝑆 \ {∞} → V returns the size variable in the given finite size expression;
• ∥·∥ : ∗ → N0 returns the cardinality of the given argument (e.g., vector length, set size, etc.);
• J·K : 𝑇 → N0 counts the number of size annotations in the given term;
• | · | : 𝑇 → 𝑇 ◦ erases sized terms to bare terms;
• | · |∞ : 𝑇 → 𝑇∞ erases sized terms to limit terms;
• | · |𝜐 : 𝑇 → 𝑇 ∗ erases size annotations 𝜐 to ∗ and all others to bare; and
• | · |𝑠 : 𝑇 → 𝑇 𝜄 erases size annotations 𝑠 to 𝜄 and all others to ∞.
Their definitions are straightforward. Functions on 𝑇 are inductive on the structure of terms,

and they do not touch recursive bare and position terms.
We use the following additional expressions relating membership in contexts and signatures:
• 𝑥 ∈ Γ, (𝑥 : 𝑡) ∈ Γ, or (𝑥 : 𝑡 B 𝑒) ∈ Γ indicate that there is some declaration with variable

name 𝑥 , some assumption with type 𝑡 , or some definition with type 𝑡 and body 𝑒 in the local
context, and similarly for Γ𝐺 ;

• Γ(𝑥) returns the type (and possibly body) bound to 𝑥 in Γ, and similarly for Γ𝐺 ;
• 𝐼 ∈ Σ means the (co)inductive definition of type 𝐼 is in the signature.

3.2 Reduction Rules
The reduction rules are the usual ones for CIC: 𝛽-reduction (function application), 𝜁 -reduction (let
expression evaluation), 𝜄-reduction (case expressions), 𝜇-reduction (fixpoint expressions), 𝜈-reduc-
tion (cofixpoint expressions), 𝛿-reduction (local definitions), and Δ-reduction (global definitions).
We define convertibility (≈) as the symmetric–reflexive–transitive compatible closure of reduc-
tions up to 𝜂-expansion. The complete reduction rules are reproduced in Appendix A; we refer the
reader to previous work [Barthe et al. 2006; Sacchini 2011, 2013] and the Coq manual in particu-
lar [The Coq Development Team 2020] for precise details and definitions.

In the case of 𝛿-/Δ-reduction, if the variable has a vector of annotations, we define additional
rules, shown in Figure 7. These reduction rules are important supporting size inference with def-
initions. If the definition body contains (co)inductive types (or other defined variables), we can
assign them fresh annotations for each distinct usage of the defined variable. This ensures that
certain subsizing relations are not lost due to the erasure of definition bodies. Further details are
discussed in later sections.

We also use the metafunctionwhnf to denote the reduction of a term to weak head normal form,
which would have the form of a universe, a function type, an unapplied abstraction, a (co)inductive
type (applied or unapplied), a constructor (applied or unapplied), or an unapplied (co)fixpoint, with
arguments and inner terms unreduced.

9

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

𝑠 ⊑ ∞
ss-infty

𝑠 ⊑ 𝑠
ss-Refl

𝑠 ⊑ 𝑠
ss-succ

𝑠1 ⊑ 𝑠2 𝑠2 ⊑ 𝑠3

𝑠1 ⊑ 𝑠3
ss-tRans

Fig. 8. Subsizing rules

Prop ≤ Set ≤ Type1 Type𝑖 ≤ Type𝑖+1
st-cumul

𝑡 ≈ 𝑢

𝑡 ≤ 𝑢
st-conv

𝑡 ≤ 𝑢 𝑢 ≤ 𝑣

𝑡 ≤ 𝑣
st-tRans

𝑡1 ≈ 𝑡2 𝑢1 ≤ 𝑢2

Π𝑥 : 𝑡1 . 𝑢1 ≤ Π𝑦 : 𝑡2 . 𝑢2
st-pRod

𝑡1 ≤ 𝑡2 𝑢1 ≈ 𝑢2

𝑡1 𝑢1 ≤ 𝑡2 𝑢2
st-app

𝐼 inductive 𝑠 ⊑ 𝑠 ′

𝐼𝑠 ≤ 𝐼𝑠
′ st-ind

𝐼 coinductive 𝑠 ′ ⊑ 𝑠

𝐼𝑠 ≤ 𝐼𝑠
′ st-coind

Fig. 9. Subtyping rules

3.3 Subtyping Rules
First, we define the subsizing relation in Figure 8. Subsizing is straightforward since our size alge-
bra is simple. Note that we define ∞̂ to be equal to ∞.

We extend the usual subtyping for CIC to sized types in Figure 9. The key features are:

• Universes are cumulative. (st-cumul)
• Since convertibility is symmetric, if 𝑡 ≈ 𝑢, then we have both 𝑡 ≤ 𝑢 and 𝑢 ≤ 𝑡 . (st-conv)
• Inductive types are covariant in their size annotations; coinductive types are contravariant.
(st-ind, st-coind)

• The argument types of function types are invariant. (st-pRod)
• The arguments of applications (and therefore the parameters and arguments of (co)inductive

types) are invariant. (st-app)

We can intuitively understand the covariance of inductive types by considering size annotations
as a measure of the maximum number of constructors “deep” an object can be. If a list has type
List𝑠 𝑡 , then a list with one more element can be said to have type List𝑠 𝑡 . By the subsizing and
subtyping rules, List𝑠 𝑡 ≤ List𝑠 𝑡 : if a list has at most 𝑠 “many” elements, then it certainly also has
at most 𝑠 “many” elements.

Conversely, for coinductive types, we can consider size annotations as a measure of how many
constructors an object must at least “produce”. A coinductive stream Stream𝑠 that produces at
least 𝑠 “many” elements can also produce at least 𝑠 “many” elements, so we have the contravariant
relation Stream𝑠 ≤ Stream𝑠 .

Rules st-pRod and st-app differ from CIĈ and CIĈ in their invariance, but correspond to CIC
in Coq. As previously mentioned, inductive definitions do not have polarities, so there is no way
to indicate whether parameters are covariant, contravariant, or invariant. As a compromise, we
treat all parameters as invariant. Note that, algorithmically speaking, the subtyping relation would
produce both subsizing constraints, and not neither. For instance, List𝑠1 Nat𝑠3 ≤ List𝑠2 Nat𝑠4 yields
Nat𝑠3 ≈ Nat𝑠4 , which yields both 𝑠3 ⊑ 𝑠4 and 𝑠4 ⊑ 𝑠3. Further details on the subtyping algorithm
are presented in Section 4.

10

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Σ is well-formed
WF(Σ,□,□)

wf-nil

Σ, Γ𝐺 , Γ ⊢ 𝑡 : 𝑤 𝑥 ∉ Γ

WF(Σ, Γ𝐺 , Γ(𝑥 : 𝑡))
wf-local-assum

Σ, Γ𝐺 ,□ ⊢ 𝑡 : 𝑤 𝑥 ∉ Γ𝐺

WF(Σ, Γ𝐺 (Assum 𝑥 : |𝑡 |∞.),□)
wf-global-assum

Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑡 𝑥 ∉ Γ

WF(Σ, Γ𝐺 , Γ(𝑥 : 𝑡 B 𝑒))
wf-local-def

Σ, Γ𝐺 ,□ ⊢ 𝑒 : 𝑡 𝑥 ∉ Γ𝐺

WF(Σ, Γ𝐺 (Def 𝑥 : |𝑡 |𝑠 B |𝑒 |∞.),□)
wf-global-def

Fig. 10. Well-formedness of environments

indType(Σ, 𝐼𝑘) = ΠΔ𝑝 .ΠΔ𝑘 .𝑤𝑘

constrType(Σ, 𝑐ℓ , 𝑠) = ΠΔ𝑝 .ΠΔℓ [𝐼∞ℓ B 𝐼𝑠ℓ] . 𝐼𝑠ℓ dom(Δ𝑝) 𝑡 ℓ
motiveType(Σ, 𝑝,𝑤, 𝐼𝑠𝑘) = ΠΔ𝑘 [dom(Δ𝑝) B 𝑝] .Π_ : 𝐼𝑠𝑘 𝑝 dom(Δ𝑘).𝑤

branchType(Σ, 𝑝, 𝑐ℓ , 𝑠, ℘) = ΠΔℓ [𝐼∞ℓ B 𝐼𝑠ℓ] [dom(Δ𝑝) B 𝑝] . ℘ 𝑡 ℓ [dom(Δ𝑝) B 𝑝] (𝑐ℓ 𝑝 dom(Δℓ))
where 𝑘 ∈ 𝚤, ℓ ∈ 𝚥,

(
Δ𝑝 ⊢ ⟨𝐼𝑖 _ : ΠΔ𝑖 .𝑤𝑖⟩ B ⟨𝑐 𝑗 : ΠΔ 𝑗 . 𝐼 𝑗 _ 𝑡 𝑗 ⟩

)
∈ Σ

Fig. 11. Metafunctions for typing rules

𝜐 ∉ SV(𝑡)
𝜐 pos 𝑡

pos-∉
𝜐 ∉ SV(𝑡)
𝜐 neg 𝑡

neg-∉
𝜐 ∉ SV(𝑡) 𝜐 pos 𝑢

𝜐 pos Π𝑥 : 𝑡 . 𝑢
pos-Π

𝜐 ∉ SV(𝑡) 𝜐 neg 𝑢
𝜐 neg Π𝑥 : 𝑡 . 𝑢

neg-Π

𝜐 ∉ SV(𝑎) 𝐼 inductive
𝜐 pos 𝐼𝑠𝑎

pos-ind
𝜐 ∉ SV(𝑎) 𝐼 coinductive

𝜐 neg 𝐼𝑠𝑎
neg-coind

Fig. 12. Positivity/negativity of size variables in terms

3.4 Typing Rules
We now present the typing rules of CIĈ∗. Note that these are type checking rules for sized terms,
whose annotations come from size inference in Section 4.

We begin with the rules for well-formedness of local and global environments, presented in Fig-
ure 10. As mentioned earlier, we elide the well-formedness of signatures. Recall from Section 2 that
global declarations, in Rules wf-global-assum and wf-global-def, have size variables erased
to implement a kind of size polymorphism for global definitions. If a global definition is size-
preserving with respect to some size annotation 𝑠 , we replace it with the global annotation 𝜄. These
annotations are instantiated with a concrete size expression as needed in the typing rules.

The typing rules for sized terms are given in Figure 13. As in CIC, we define the three sets
Axioms, Rules, and Elims, which describe how universes are typed, how products are typed, and
what eliminations are allowed in case expressions, respectively. These are listed in Figure 22 in
Appendix C. Metafunctions that construct some important function types are listed in Figure 11;
they are also used by the inference algorithm in Section 4. Finally, the typing rules use the notions
of positivity and negativity, whose rules are given in Figure 12, describing where the position
annotations of fixpoints are allowed to appear. Positivity and negativity are structured such that
the properties 𝜐 pos 𝑡 ⇔ 𝑡 ≤ 𝑡 [𝜐 B 𝜐] and 𝜐 neg 𝑡 ⇔ 𝑡 [𝜐 B 𝜐] ≤ 𝑡 hold.

11

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

Σ, Γ𝐺 , Γ ⊢ 𝑇 : 𝑇

WF(Σ, Γ𝐺 , Γ) (𝑥 : 𝑡) ∈ Γ

Σ, Γ𝐺 , Γ ⊢ 𝑥 : 𝑡
vaR-assum

WF(Σ, Γ𝐺 , Γ) (Assum 𝑥 : 𝑡 .) ∈ Γ𝐺

Σ, Γ𝐺 , Γ ⊢ 𝑥 : 𝑡
const-assum

WF(Σ, Γ𝐺 , Γ) (𝑥 : 𝑡 B 𝑒) ∈ Γ

Σ, Γ𝐺 , Γ ⊢ |𝑒 |∞ [∞𝑖 B 𝑠𝑖] : 𝑡
Σ, Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ : 𝑡

vaR-def

WF(Σ, Γ𝐺 , Γ) (Def 𝑥 : 𝑡 B 𝑒.) ∈ Γ𝐺
Σ, Γ𝐺 ,□ ⊢ |𝑒 |∞ [∞𝑖 B 𝑠𝑖] : 𝑡 [𝜄 B 𝑠]

Σ, Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ : 𝑡 [𝜄 B 𝑠]
const-def

WF(Σ, Γ𝐺 , Γ) (𝑤1,𝑤2) ∈ Axioms
Σ, Γ𝐺 , Γ ⊢ 𝑤1 : 𝑤2

univ
Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑡 Σ, Γ𝐺 , Γ ⊢ 𝑢 : 𝑤 𝑡 ≤ 𝑢

Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑢
conv

Σ, Γ𝐺 , Γ ⊢ 𝑡 : 𝑤1 Σ, Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑢 : 𝑤2 (𝑤1,𝑤2,𝑤3) ∈ Rules
Σ, Γ𝐺 , Γ ⊢ Π𝑥 : 𝑡 . 𝑢 : 𝑤3

pRod

Σ, Γ𝐺 , Γ ⊢ 𝑡 : 𝑤 Σ, Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑒 : 𝑢
Σ, Γ𝐺 , Γ ⊢ 𝜆𝑥 : |𝑡 |. 𝑒 : Π𝑥 : 𝑡 . 𝑢

abs
Σ, Γ𝐺 , Γ ⊢ 𝑒1 : Π𝑥 : 𝑡 . 𝑢 Σ, Γ𝐺 , Γ ⊢ 𝑒2 : 𝑡

Σ, Γ𝐺 , Γ ⊢ 𝑒1 𝑒2 : 𝑢 [𝑥 B 𝑒2]
app

Σ, Γ𝐺 , Γ ⊢ 𝑒1 : 𝑡 Σ, Γ𝐺 , Γ(𝑥 : 𝑡 B 𝑒1) ⊢ 𝑒2 : 𝑢

Σ, Γ𝐺 , Γ ⊢ let 𝑥 : |𝑡 | B 𝑒1 in 𝑒2 : 𝑢 [𝑥 B 𝑒1]
let-in

WF(Σ, Γ𝐺 , Γ)
Σ, Γ𝐺 , Γ ⊢ 𝐼𝑠 : indType(Σ, 𝐼)

ind
WF(Σ, Γ𝐺 , Γ)

Σ, Γ𝐺 , Γ ⊢ 𝑐 : constrType(Σ, 𝑐, 𝑠)
constR

Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝐼𝑠𝑘 𝑝 𝑎 indType(Σ, 𝐼𝑘) = Π_.Π_.𝑤𝑘 (𝑤𝑘 ,𝑤, 𝐼𝑘) ∈ Elims
Σ, Γ𝐺 , Γ ⊢ ℘ : motiveType(Σ, 𝑝,𝑤, 𝐼𝑠𝑘) Σ, Γ𝐺 , Γ ⊢ 𝑒 𝑗 : branchType(Σ, 𝑝, 𝑐 𝑗 , 𝑠, ℘)

Σ, Γ𝐺 , Γ ⊢ case |℘ | 𝑒 of ⟨𝑐 𝑗 ⇒ 𝑒 𝑗 ⟩ : ℘ 𝑎 𝑒
case

𝑡𝑘 ≈ ΠΔ1𝑘 .Π𝑥𝑘 : 𝐼𝜐𝑘
𝑘

𝑎𝑘 .ΠΔ2𝑘 . 𝑢𝑘 ∥Δ1𝑘 ∥ = 𝑛𝑚 − 1 𝜐𝑘 pos Δ1𝑘 ,Δ2𝑘 , 𝑢𝑘
𝜐𝑘 ∉ SV(Γ, 𝑎𝑘 , 𝑒𝑘) Σ, Γ𝐺 , Γ ⊢ 𝑡𝑘 : 𝑤𝑘 Σ, Γ𝐺 , Γ(𝑓𝑘 : 𝑡𝑘) ⊢ 𝑒𝑘 : 𝑡𝑘 [𝜐𝑘 B 𝜐𝑘]

Σ, Γ𝐺 , Γ ⊢ fix⟨𝑛𝑘 ⟩,𝑚 ⟨𝑓𝑘 : |𝑡𝑘 |𝜐𝑘 B 𝑒𝑘 ⟩ : 𝑡𝑚 [𝜐𝑚 B 𝑠]
fix

𝑡𝑘 ≈ ΠΔ𝑘 . 𝐼
𝜐𝑘
𝑘

𝑎𝑘 𝜐𝑘 neg Δ𝑘
𝜐𝑘 ∉ SV(Γ, 𝑎𝑘 , 𝑒𝑘) Σ, Γ𝐺 , Γ ⊢ 𝑡𝑘 : 𝑤𝑘 Σ, Γ𝐺 , Γ(𝑓𝑘 : 𝑡𝑘) ⊢ 𝑒𝑘 : 𝑡𝑘 [𝜐𝑘 B 𝜐𝑘]

Σ, Γ𝐺 , Γ ⊢ cofix𝑚 ⟨𝑓𝑘 : |𝑡𝑘 |𝜐𝑘 B 𝑒𝑘 ⟩ : 𝑡𝑚 [𝜐𝑚 B 𝑠]
cofix

Fig. 13. Typing rules

Rules vaR-assum, const-assum, univ, conv pRod, and app are essentially unchanged from CIC.
Rules abs and let-in differ only in that type annotations are erased to bare. This is to preserve
subject reduction without requiring size substitution during reduction, and is discussed further
by Sacchini [2011].

The first significant usage of size annotations are in Rules vaR-def and const-def. If a variable
or a constant is bound to a body in the local or global environment, it is annotated with a vector
of size expressions such that the body is well-typed after substituting in those size expressions,
allowing for proper 𝛿-/Δ-reduction of variables and constants. Note that each usage of a variable or
a constant does not have to have the same size annotations. Furthermore, every global annotation
in a constant’s type is instantiated to the same size expression 𝑠 , which enforces size-preservedness.

12

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Before discussing typing (co)inductive types, there are some indexing conventions to note. In
Rules ind, constR, and case, we use 𝑖 to range over the number of (co)inductive types in a single
mutual (co)inductive definition, 𝑗 to range over the number of constructors of a given (co)inductive
type, 𝑘 for a specific index in the range 𝚤, and ℓ for a specific index in the range 𝚥. In Rules fix and
cofix, we use 𝑘 to range over the number of mutually-defined (co)fixpoints and𝑚 for a specific
index in the range 𝑘 . When a judgement contains a ranging index not contained within ⟨·⟩, it
means that the judgement or side condition should hold for all indices in its range. For instance,
the branch judgement in Rule case should hold for all branches, and the fixpoint type judgement
in Rule fix should hold for all mutually-defined fixpoints. Finally, we use _ (underscore) to omit
irrelevant constructions for readability.

In Rule ind, the type of a (co)inductive type is a function type from its parameters Δ𝑝 and its
indices Δ𝑘 to its universe𝑤𝑘 . The (co)inductive type itself holds a single size annotation.

In Rule constR, the type of a constructor is a function type from its parameters Δ𝑝 and its argu-
ments Δℓ to its (co)inductive type 𝐼ℓ applied to the parameters and its indices 𝑡 ℓ . Size annotations
appear in two places:

• In the argument types of the constructor. We annotate each occurrence of 𝐼ℓ in Δℓ with a size
expression 𝑠 .

• On the (co)inductive type of the fully-applied constructor. If the constructor belongs to the
inductive type 𝐼ℓ , then it is annotated with the size expression 𝑠 . Using the successor guaran-
tees that the constructor always constructs an object that is larger than any of its arguments
of the same type.

As an example, consider a possible typing of VCons:

VCons : (𝐴 : Type) → (𝑛 : Nat∞) → 𝐴 → Vector𝑠 𝐴 𝑛 → Vector𝑠 𝐴 (S 𝑛)

It has a single parameter 𝐴 and S 𝑛 corresponds to the index 𝑡 𝑗 of the constructor’s inductive type.
The input Vector has size 𝑠 , while the output Vector has size 𝑠 .

In Rule case, a case expression has three important parts:
• The target 𝑒 . It must have a (co)inductive type 𝐼𝑘 with a successor size annotation 𝑠𝑘 so that

any constructor arguments of the same type can have the predecessor size annotation.
• The motive ℘. It is an abstraction over the indices Δ𝑘 of the target type 𝐼𝑘 and the target

itself, and produces the return type of the case expression. Note that in the motive’s type in
Figure 11, the parameter variables dom(Δ𝑝) in the indices are bound to the parameters of the
target type.
(This presentation follows CIC, but differs from that by Sacchini [2011, 2013, 2014], where the
case expression contains a return type in which the index and target variables are free and
explicitly stated, in the syntactic form 𝑦.𝑥 .℘.)

• The branches 𝑒 𝑗 . Each branch is associated with a constructor 𝑐 𝑗 and is an abstraction over
the arguments Δ 𝑗 of the constructor, producing some term. The type of each branch, listed
in Figure 11, is the motive ℘ applied to the indices 𝑡 𝑗 of that constructor’s type and the con-
structor applied to the parameters and its arguments.
Note that, like in the type of constructors, we annotate each occurence of 𝑐 𝑗 ’s (co)inductive
type 𝐼𝑘 in Δ 𝑗 with the size expression 𝑠 . The parameter variables in Δ 𝑗 and 𝑡 𝑗 are similarly
bound to the parameters 𝑝 of the target.

The type of the entire case expression is then the motive applied to the target type’s indices and
the target itself. Notice that we also restrict the universe of this type based on the universe of the
target type using Elims.

13

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

Finally, we have the typing of mutual (co)fixpoints in rules fix and cofix. We take the an-
notated type 𝑡𝑘 of the 𝑘th (co)fixpoint definition to be convertible to a function type contain-
ing a (co)inductive type, as usual. However, instead of the guard condition, we ensure termina-
tion/productivity using size expressions.

The main difficulty in these rules is supporting size preserving (co)fixpoints. We must restrict
how the size variable 𝑣𝑘 appears in the type of the (co)fixpoints, using the pos and neg judgments.
For fixpoints, the type of the𝑛𝑘 th argument, the recursive argument, is an inductive type annotated
with a size variable 𝑣𝑘 . For cofixpoints, the return type is a coinductive type annotated with 𝑣𝑘 .
The positivity or negativity of 𝑣𝑘 in the rest of 𝑡𝑘 indicate where 𝑣𝑘 may occur other than in the
(co)recursive position. For instance, List𝜐 Nat → List𝜐 Nat → List𝜐 Nat is a valid fixpoint type
with respect to 𝜐, while Stream𝜐 Nat → List𝜐 Nat → List Nat𝜐 is not, since 𝜐 appears negatively
in Stream and must not appear at all in the parameter of the List return type. This is because
𝜐𝑘 indicates the types that are size-preserved. For fixpoints, it indicates not only the recursive
argument but alsowhich argument or return types have size at most that of the recursive argument.
For cofixpoints, it indicates the arguments that have size at least that of the return type. Therefore,
it cannot appear on types of the incorrect recursivity, or on types not being (co)recurred upon.

As in Rule abs, we cannot keep the size annotations. Instead, we mark (co)fixpoint type anno-
tations, which recall are position terms, as size-preserving using the erasure |𝑡𝑘 |𝜐𝑘 to replace size
annotations in 𝑡𝑘 whose size variable is 𝜐𝑘 with ∗.

Checking termination and productivity is relatively straightforward. If 𝑡𝑘 are well typed, then
the (co)fixpoint bodies should have type 𝑡𝑘 with a successor size in the local context where (co)fix-
point names 𝑓𝑘 are bound to their types 𝑡𝑘 . Intuitively, this tells us that the recursive call to 𝑓𝑘 in
fixpoint bodies are on smaller-sized arguments, and that corecursive bodies produce objects larger
than those from the corecursive call to 𝑓𝑘 . The type of the whole (co)fixpoint is then the𝑚th type
𝑡𝑚 with its size variable 𝑣𝑚 bound to some size expression 𝑠 .

In Coq, the indices of the recursive elements are rarely given, and there are no user-provided
position annotations at all. In Section 4, we present how we compute the indices and the position
annotations during size inference.

4 SIZE INFERENCE
In this section, we present a size inference algorithm, whose goal is to take unannotated pro-
grams in 𝑇 ◦ (corresponding to terms in CIC), simultaneously assign annotations to them while
collecting a set of subsizing constraints based on the typing rules, check the constraints to ensure
well-typedness, and produce annotated programs in 𝑇 𝜄 that are stored in the global environment
and can be used in the inference of future programs. Constraints are generated when comparing
two types 𝑡,𝑢 to ensure that the subtyping relation 𝑡 ≤ 𝑢 holds. Therefore, this algorithm is also
a type checking algorithm, since it could be that 𝑡 fails to subtype 𝑢, in which case the algorithm
fails.

Our algorithm is an extension to the size inference algorithm of CIĈ , and Barthe et al. [2006]
presents soundness and completeness of their algorithm with respect to CIĈ ’s typing rules. We
discuss soundness and completeness theorems of our algorithmwith respect to CIC∗̂’s typing rules
in Section 5.

4.1 Notation
We define three judgements to represent checking, inference, and well-formedness. They all use the
symbol ⇝, with inputs on the left and outputs on the right. We use 𝐶 : P(𝑆 × 𝑆) to represent
subsizing constraints: if (𝑠1, 𝑠2) ∈ 𝐶 , then we must enforce 𝑠1 ⊑ 𝑠2.

14

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

𝐶, Γ𝐺 , Γ ⊢ 𝑇 ◦ ⇐ 𝑇 ⇝ 𝐶,𝑇

𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇝ 𝐶1, 𝑒 ⇒ 𝑡

𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇐ 𝑢 ⇝ 𝐶1 ∪ 𝑡 ⪯ 𝑢, 𝑒
a-checK

Fig. 14. Size inference algorithm: Checking

• Checking, 𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇐ 𝑡 ⇝ 𝐶 ′, 𝑒 , takes a set of constraints 𝐶 , environments Γ𝐺 , Γ, a
bare term 𝑒◦, and an annotated type 𝑡 , and produces the annotated term 𝑒 with a new set of
constraints 𝐶 ′ that ensures that the type of 𝑒 subtypes 𝑡 .

• Inference, 𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇝ 𝐶 ′, 𝑒 ⇒ 𝑡 , takes a set of constraints 𝐶 , environments Γ𝐺 , Γ, and
a bare term 𝑒◦, and produces the annotated term 𝑒 , its annotated type 𝑡 , and a new set of
constraints 𝐶 ′.

• Well-formedness, Γ◦𝐺 ⇝ Γ𝐺 , takes a global environment with bare declarations and produces
a global environment where each declaration has been properly annotated via size inference.

The algorithm is implicitly parameterized over a fixed signature Σ, as well as two mutable sets
of size variables V,V∗, such that V∗ ⊆ V . Their assignment is denoted with B and they are
initialized as empty. The setV∗ contains position size variables, which mark size-preserving types,
and we use 𝜏 for these position size variables. We define two additional metafunctions: PV returns
all position size variables in a given term, while | · |∗ erases position size variables to position anno-
tations and all other annotations to bare. Finally, on the right-hand size of inference judgements,
we use 𝑒 ⇒∗ 𝑡 to mean 𝑒 ⇒ 𝑡 ′ ∧ 𝑡 = whnf(𝑡 ′).

We define a number of metafunctions to translate the side conditions from the typing rules
into procedural form. They are introduced as needed, but are also summarized in Figure 23 in
Appendix C.

4.2 Inference Algorithm
Size inference begins with a bare term; even type annotations of (co)fixpoints are bare, i.e.,

𝑇 ◦ F · · · | fix⟨𝑛𝑘 ⟩,𝑚 ⟨X : 𝑇 ◦ B 𝑇 ◦⟩ | cofix𝑚 ⟨X : 𝑇 ◦ B 𝑇 ◦⟩
Notice that fixpoints still have a vector of indices, with𝑛𝑘 being the index of the recursive argument
of the 𝑘th mutual fixpoint, whereas Coq programs have no indices. To produce these indices, we
do what Coq currently does: brute-force search. We attempt type checking on every combination
of indices from left to right (even if the type of the argument at that index is not inductive). This
continues until one combination works, or fails if none do.

Figure 14, Figure 15, and Figure 17 present the size inference algorithm, which uses the same
indexing conventions as the typing rules. We go over parts of the algorithm in detail shortly.

Rule a-checK is the checking component of the algorithm. To ensure that the inferred type
subtypes the given type, we use the metafunction ⪯ that takes two sized terms and attempts to
produce a set of subsizing constraints based on the subtyping rules of Figure 9. ⪯may reduce terms
to check convertibility and will fail if two terms are incompatible.

Rules a-vaR-assum, a-const-assum, a-univ, a-pRod, a-abs, a-app, and a-let-in are all fairly
straightforward. Note that after type annotations pass through inference to become sized types,
they must be erased to bare types again. These rules use the metafunctions axiom, rule, and elim,
which correspond to the sets Axioms, Rules, and Elims, defined in Figure 22. The metafunction
axiom produces the type of a universe; rule produces the type of a function type given the universes
of its argument and return types; and elim directly checks membership in Elims and can fail.

In Rules a-vaR-def and a-const-def, we annotate variables and constants using a vector of
annotations from fresh, which generates the given number of fresh size variables and adds them

15

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

𝐶, Γ𝐺 , Γ ⊢ 𝑇 ◦ ⇝ 𝐶,𝑇 ⇒ 𝑇

𝐶, Γ𝐺 , Γ ⊢ 𝑥 ⇝ 𝐶, 𝑥 ⇒ Γ(𝑥)
a-vaR-assum

𝐶, Γ𝐺 , Γ ⊢ 𝑥 ⇝ 𝐶, 𝑥 ⇒ Γ𝐺 (𝑥)
a-const-assum

(𝑒 : 𝑡) = Γ(𝑥) 𝜐𝑖 = fresh(J𝑒K)
𝐶, Γ𝐺 , Γ ⊢ 𝑥 ⇝ 𝐶, 𝑥 ⟨𝜐𝑖 ⟩ ⇒ 𝑡

a-vaR-def

(𝑒 : 𝑡) = Γ𝐺 (𝑥)
𝜐𝑖 = fresh(J𝑒K) 𝜐 = fresh(1)

𝐶, Γ𝐺 , Γ ⊢ 𝑥 ⇝ 𝐶, 𝑥 ⟨𝜐𝑖 ⟩ ⇒ 𝑡 [𝜄 B 𝜐]
a-const-def

𝐶, Γ𝐺 , Γ ⊢ 𝑤 ⇝ 𝐶,𝑤 ⇒ axiom(𝑤)
a-univ

𝐶, Γ𝐺 , Γ ⊢ 𝑡◦ ⇝ 𝐶1, 𝑡 ⇒∗ 𝑤1 𝐶1, Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑢◦ ⇝ 𝐶2, 𝑢 ⇒∗ 𝑤2

𝐶, Γ𝐺 , Γ ⊢ Π𝑥 : 𝑡◦. 𝑢◦ ⇝ 𝐶2,Π𝑥 : 𝑡 . 𝑢 ⇒ rule(𝑤1,𝑤2)
a-pRod

𝐶, Γ𝐺 , Γ ⊢ 𝑡◦ ⇝ 𝐶1, 𝑡 ⇒∗ 𝑤 𝐶1, Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑒◦ ⇝ 𝐶2, 𝑒 ⇒ 𝑢

𝐶, Γ𝐺 , Γ ⊢ 𝜆𝑥 : 𝑡◦. 𝑒◦ ⇝ 𝐶2, 𝜆𝑥 : |𝑡 |. 𝑒 ⇒ Π𝑥 : 𝑡 . 𝑢
a-abs

𝐶, Γ𝐺 , Γ ⊢ 𝑒◦1 ⇝ 𝐶1, 𝑒1 ⇒∗ Π𝑥 : 𝑡 . 𝑢 𝐶1, Γ𝐺 , Γ ⊢ 𝑒◦2 ⇐ 𝑡 ⇝ 𝐶2, 𝑒2

𝐶, Γ𝐺 , Γ ⊢ 𝑒◦1 𝑒
◦
2 ⇝ 𝐶2, 𝑒1 𝑒2 ⇒ 𝑢 [𝑥 B 𝑒2]

a-app

𝐶, Γ𝐺 , Γ ⊢ 𝑡◦ ⇝ 𝐶1, 𝑡 ⇒∗ 𝑤 𝐶1, Γ𝐺 , Γ ⊢ 𝑒◦1 ⇐ 𝑡 ⇝ 𝐶2, 𝑒1
𝐶2, Γ𝐺 , Γ(𝑥 : 𝑡 B 𝑒1) ⊢ 𝑒◦2 ⇝ 𝐶3, 𝑒2 ⇒ 𝑢

𝐶, Γ𝐺 , Γ ⊢ let 𝑥 : 𝑡◦ B 𝑒◦1 in 𝑒◦2 ⇝ 𝐶3, let 𝑥 : |𝑡 | B 𝑒1 in 𝑒2 ⇒ 𝑢 [𝑥 B 𝑒1]
a-let-in

𝜐 = fresh(1)
𝐶, Γ𝐺 , Γ ⊢ 𝐼 ⇝ 𝐶, 𝐼𝜐 ⇒ indType(Σ, 𝐼)

a-ind
𝜏 = fresh(1) V B V ∪ {𝜏}

𝐶, Γ𝐺 , Γ ⊢ 𝐼∗ ⇝ 𝐶, 𝐼𝜏 ⇒ indType(Σ, 𝐼)
a-ind-staR

𝜐 = fresh(1)
𝐶, Γ𝐺 , Γ ⊢ 𝑐 ⇝ 𝐶, 𝑐 ⇒ constrType(Σ, 𝑐, 𝜐)

a-constR

𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇝ 𝐶1, 𝑒 ⇒∗ 𝐼𝑠𝑘 𝑝 𝑎 𝐶1, Γ𝐺 , Γ ⊢ ℘◦ ⇝ 𝐶2, ℘ ⇒ 𝑡𝑝
Π_.ΠΔ𝑘 .𝑤𝑘 = indType(Σ, 𝐼𝑘) 𝑤 = decompose(𝑡𝑝 , ∥Δ𝑘 ∥ + 1) elim(𝑤𝑘 ,𝑤, 𝐼𝑘)

𝜐 = fresh(1) 𝐶3 = caseSize(𝐼𝑠𝑘 , 𝜐) 𝐶4 = 𝑡𝑝 ⪯ motiveType(Σ, 𝑝,𝑤, 𝐼𝜐𝑘)
𝐶5 = 𝐶2 ∪𝐶3 ∪𝐶4 𝐶5, Γ𝐺 , Γ ⊢ 𝑒◦𝑗 ⇐ branchType(Σ, 𝑝, 𝑐 𝑗 , 𝜐, ℘) ⇝ 𝐶6𝑗 , 𝑒 𝑗 𝐶6 =

⋃
𝑗 𝐶6𝑗

𝐶, Γ𝐺 , Γ ⊢ case℘◦ 𝑒◦ of ⟨𝑐 𝑗 ⇒ 𝑒◦𝑗 ⟩ ⇝ 𝐶6, case |℘ | 𝑒 of ⟨𝑐 𝑗 ⇒ 𝑒 𝑗 ⟩ ⇒ ℘ 𝑎 𝑒
a-case

𝐶, Γ𝐺 , Γ ⊢ 𝑡◦𝑘 ⇝ _, _ ⇒ _ 𝐶, Γ𝐺 , Γ ⊢ setRecStars(𝑡◦𝑘 , 𝑛𝑘) ⇝ 𝐶1𝑘 , 𝑡𝑘 ⇒∗ 𝑤⋃
𝑘 𝐶1𝑘 , Γ𝐺 , Γ(𝑓𝑘 : 𝑡𝑘) ⊢ 𝑒◦𝑘 ⇐ shift(𝑡𝑘) ⇝ 𝐶2𝑘 , 𝑒𝑘 𝐶2 =

⋃
𝑘 𝐶2𝑘 ∪ 𝑡𝑘 ⪯ shift(𝑡𝑘)

𝐶3 = RecCheckLoop(𝐶2, getRecVar(𝑡𝑘 , 𝑛𝑘), 𝑡𝑘 , 𝑒𝑘)
𝐶, Γ𝐺 , Γ ⊢ fix⟨𝑛𝑘 ⟩,𝑚 ⟨𝑓𝑘 : 𝑡◦𝑘 B 𝑒◦𝑘 ⟩ ⇝ 𝐶3, fix⟨𝑛𝑘 ⟩,𝑚 ⟨𝑓𝑘 : |𝑡𝑘 |∗ B 𝑒𝑘 ⟩ ⇒ 𝑡𝑚

a-fix

𝐶, Γ𝐺 , Γ ⊢ 𝑡◦𝑘 ⇝ _, _ ⇒ _ 𝐶, Γ𝐺 , Γ ⊢ setCorecStars(𝑡◦𝑘) ⇝ 𝐶1𝑘 , 𝑡𝑘 ⇒∗ 𝑤⋃
𝑘 𝐶1𝑘 , Γ𝐺 , Γ(𝑓𝑘 : 𝑡𝑘) ⊢ 𝑒◦𝑘 ⇐ shift(𝑡𝑘) ⇝ 𝐶2𝑘 , 𝑒𝑘 𝐶2 =

⋃
𝑘 𝐶2𝑘 ∪ shift(𝑡𝑘) ⪯ 𝑡𝑘

𝐶3 = RecCheckLoop(𝐶2, getCorecVar(𝑡𝑘), 𝑡𝑘 , 𝑒𝑘)
𝐶, Γ𝐺 , Γ ⊢ cofix𝑚 ⟨𝑓𝑘 : 𝑡◦𝑘 B 𝑒◦𝑘 ⟩ ⇝ 𝐶3, cofix𝑚 ⟨𝑓𝑘 : |𝑡𝑘 |∗ B 𝑒𝑘 ⟩ ⇒ 𝑡𝑚

a-cofix

Fig. 15. Size inference algorithm: Inference

16

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

to V . The length of the vector corresponds to the number of size annotations found in the body
of the definitions. For instance, if (𝑥 : Type B List𝑠1 Nat𝑠2) ∈ Γ, then a use of 𝑥 would be
annotated as 𝑥 ⟨𝜐1,𝜐2 ⟩ . If 𝑥 is 𝛿-reduced during inference, such as in a fixpoint type, then it is replaced
by List𝜐1 Nat𝜐2 . Furthermore, since the types of global definitions can have global annotations
marking sized-preserved types, we replace the global annotations with a fresh size variable.

A position-annotated type from a (co)fixpoint can be passed into the algorithm, so we deal with
the possibilities separately in Rules a-ind and a-ind-staR. In both rules, a bare (co)inductive type
is annotated with a size variable; in Rule a-ind-staR, it is also added to the set of position size
variables V∗.

In Rule a-constR, we generate a single fresh size variable, which gets annotated on the con-
structor’s (co)inductive type in the argument types of the constructor type, as well as the return
type, which has the successor of that size variable. All other (co)inductive types which are not the
constructor’s (co)inductive type continue to have ∞ annotations.

The key constraint in Rule a-case is generated by caseSize. Similar to Rule a-constR, we gen-
erate a single fresh size variable 𝜐 to annotate on 𝐼𝑘 in the branches’ argument types, which corre-
spond to the constructor arguments of the target.Then, given the unapplied target type 𝐼𝑠

𝑘
, caseSize

returns {𝑠 ⊑ 𝜐} if 𝐼𝑘 is inductive and {𝜐 ⊑ 𝑠} if 𝐼𝑘 is coinductive. This ensures that the target type
satisfies 𝐼𝑠

𝑘
𝑝 𝑎 ≤ 𝐼𝜐𝑘

𝑘
𝑝 𝑎, so that Rule case is satisfied.

The rest of the rule proceeds as we would expect: we infer the sized type of the target and the
motive, we check that the motive and the branches have the types we expect given the target
type, and we infer that the sized type of the case expression is the annotated motive applied to the
target type’s annotated indices and the annotated target itself. We also ensure that the elimination
universes are valid using elim on the motive type’s return universe and the target type’s universe.
To obtain the motive type’s return universe, we use decompose. Given a type 𝑡 and a natural 𝑛,
this metafunction reduces 𝑡 to a function type ΠΔ. 𝑢 where ∥Δ∥ = 𝑛, reduces 𝑢 to a universe 𝑤 ,
and returns 𝑤 . It can fail if 𝑡 cannot be reduced to a function type, if ∥Δ∥ < 𝑛, or if 𝑢 cannot be
reduced to a universe.

Finally, we come to size inference and termination/productivity checking for (co)fixpoints. It
uses the following metafunctions:

• setRecStars, given a function type 𝑡 and an index 𝑛, decomposes 𝑡 into arguments and a
return type, reduces the 𝑛th argument type to an inductive type, annotates that inductive
type with position annotation ∗, annotates all other argument and return types with the same
inductive type with ∗, and rebuilds the function type. This is how fixpoint types obtain their
position annotations without being user-provided; the algorithm will remove other position
annotations if size-preservation fails.
Similarly, setCorecStars annotates the coinductive return type first, then the argument types
with the same coinductive type. Both of these can fail if the 𝑛th argument type or the return
type respectively are not (co)inductive types. Note that the decomposition of 𝑡 may perform
reductions using whnf.

• getRecVar, given a function type 𝑡 and an index 𝑛, returns the position size variable of the
annotation on the 𝑛th inductive argument type, while getCorecVar returns the position size
variable of the annotation on the coinductive return type. Essentially, they retrieve the posi-
tion size variable of the annotation on the primary (co)recursive type of a (co)fixpoint type.

• shift replaces all position size annotations 𝑠 (i.e., ⌊𝑠⌋ ∈ V∗) by its successor 𝑠 .
Although the desired (co)fixpoint is the𝑚th one in the block of mutually-defined (co)fixpoints,

we must still size-infer and type-check the entire mutual definition. Rules a-fix and a-cofix first
run the size inference algorithm on each of the (co)fixpoint types, ignoring the results, to ensure

17

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

let rec RecCheckLoop 𝐶2 𝜏𝑘 𝑡𝑘 𝑒𝑘 =
try let 𝐶3 = {} in

let for i = 1 to k do
let pv𝑖 = PV 𝑡𝑖 in
let sv𝑖 = (SV 𝑡𝑖 ∪ SV 𝑒𝑖) \ pv𝑖 in
𝐶3 := 𝐶3 ∪ RecCheck 𝐶2 𝜏𝑖 pv𝑖 sv𝑖

done in 𝐶3

with RecCheckFail 𝑉 ->
if (empty? 𝑉)
then raise RecCheckLoopFail
else V∗ := V∗ \𝑉 ; RecCheckLoop 𝐶2 𝜏𝑘 𝑡𝑘 𝑒𝑘

Fig. 16. Pseudocode implementation of RecChecKLoop

that any reduction on those types will terminate.Thenwe annotate the bare types with position an-
notations (using setRecStars/setCorecStars) and pass these position types through the algorithm
to get sized types 𝑡𝑘 . Next, we check that the (co)fixpoint bodies have the successor-sized types of
𝑡𝑘 when the (co)fixpoints have types 𝑡𝑘 in the local environment. Lastly, we call RecCheckLoop,
and return the constraints it gives us, along with the𝑚th (co)fixpoint type.

Notice that setRecStars and setCorecStars optimistically annotates all possible (co)inductive
types in the (co)fixpoint typewith position annotations, but not all (co)fixpoints are size-preserving.
RecCheckLoop filters these annotations to generate the final constraint set. This is a recursive
function that calls RecCheck, which checks satisfiability of a given constraint set. If the set is
unsatisfiable due to a bad position annotation, then RecCheckLoop removes it and tries again.

More specifically, RecCheck can fail raising RecCheckFail, which contains a set 𝑉 of position
size variables that must be set to infinity; since position size variables always appear on size-
preserved types, they cannot be infinite. RecCheckLoop then removes 𝑉 from the set of position
size variables, allowing them to be set to infinity, and recursively calls itself. The number of po-
sition size variables from the (co)fixpoint type shrinks on every iteration until no more can be
removed. If no satisfiable set is found even when no positions are considered size preserving, ter-
mination/productivity checking and thus type inference has failed. An OCaml-like pseudocode
implementation of RecCheckLoop is provided by Figure 16.

4.3 RecCheck
As in previous work on CC𝜔 with coinductive streams [Sacchini 2013] and in CIĈ , we use the
same RecCheck algorithm from F̂ [Barthe et al. 2005]. This algorithm attempts to ensure that the
subsizing rules in Figure 8 can be satisfied within a given set of constraints. It does so by checking
the set of constraints for invalid circular subsizing relations, setting the size variables involved in
the cycles to ∞, and producing a new set of constraints without these problems or fails, which
indicates nontermination or nonproductivity. It takes four arguments:

• A set of subsizing constraints 𝐶 .
• The size variable 𝜏 of the annotation on the type of the recursive argument (for fixpoints) or

on the return type (for cofixpoints). While other arguments (and the return type, for fixpoints)
may optionally be marked as size-preserving, each (co)fixpoint type requires at least 𝜏 for the
primary (co)recursive type.

• A set of size variables 𝑉 ∗ that must be set to some non-infinite size. These are the size anno-
tations in the (co)fixpoint type that have position size variables. Note that 𝜏 ∈ 𝑉 ∗.

18

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Γ◦𝐺 ⇝ Γ𝐺

□ ⇝ □
a-global-nil

Γ◦𝐺 ⇝ Γ𝐺 ∅, Γ𝐺 ,□ ⊢ 𝑡◦ ⇝ _, 𝑡 ⇒ 𝑤

Γ◦𝐺 (Assum 𝑥 : 𝑡◦.) ⇝ Γ𝐺 (Assum 𝑥 : |𝑡 |∞.)
a-global-assum

Γ◦𝐺 ⇝ Γ𝐺 ∅, Γ𝐺 ,□ ⊢ 𝑡◦ ⇝ _, 𝑡 ⇒ 𝑤
𝐶1, Γ𝐺 ,□ ⊢ 𝑒◦ ⇝ _, 𝑒 ⇒ 𝑢 _ = 𝑢 ⪯ 𝑡 𝑡 ′ = eraseToGlobal(𝑢, 𝑡)

Γ◦𝐺 (Def 𝑥 : 𝑡◦ B 𝑒◦.) ⇝ Γ𝐺 (Def 𝑥 : 𝑡 ′ B |𝑒 |∞.)
a-global-def

Fig. 17. Size inference algorithm: Well-formedness

• A set of size variables𝑉 ≠ that must be set to ∞. These are all other non-position size annota-
tions, found in the (co)fixpoint types and bodies.

Here, we begin to treat 𝐶 as a weighted, directed graph. Each size variable corresponds to a
node, and each subsizing relation is an edge from the lower to the upper variable. A size expression
consists of a size variable with an arbitrary finite nonnegative number of successor “hats”; instead
of using a perniculous tower of carets, we can write the number as a superscript, as in 𝜐𝑛 . Then
given a subsizing relation 𝜐𝑛1

1 ⊑ 𝜐𝑛2

2 , the weight of the edge from 𝜐1 to 𝜐2 is 𝑛2 − 𝑛1. Subsizings
to ∞ do not need to be added to 𝐶 since they are given by Rule ss-infty; subsizings from ∞ are
given an edge weight of 0.

Given a set of size variables 𝑉 , its upward closure
⊔
𝑉 in 𝐶 is the set of size variables that can

be reached from 𝑉 by travelling along the edges of 𝐶; that is, 𝜐1 ∈ 𝑉 ∧ 𝜐𝑛1

1 ⊑ 𝜐𝑛2

2 =⇒ 𝜐2 ∈ 𝑉 .
Similarly, the downward closure

d
𝑉 in𝐶 is the set of size variables that can reach𝑉 by travelling

along the edges of 𝐶 , or 𝜐2 ∈ 𝑉 ∧ 𝜐𝑛1

1 ⊑ 𝜐𝑛2

2 =⇒ 𝜐1 ∈ 𝑉 .
We use the notation 𝜐 ⊑ 𝑉 to denote the set of constraints from 𝜐 to each size variable in𝑉 and

similarly for 𝑉 ⊑ 𝜐.
The algorithm proceeds as follows:

(1) Add 𝑉 ∗ ⊑ 𝜏 to 𝐶 . This ensures that all position size variables are size-preserving.
(2) Let𝑉 𝜄 =

d
𝑉 ∗, and add 𝜏 ⊑ 𝑉 𝜄 to𝐶 . This ensures that 𝜏 is the smallest size variable among all

the noninfinite size variables.
(3) Find all negative cycles in𝐶 , and let𝑉 − be the set of all size variables in some negative cycle.
(4) Remove all edges with size variables in𝑉 − from𝐶 , and add∞ ⊑ 𝑉 −. Since ∞̂ ⊑ ∞, this is the

only way to resolve negative cycles.
(5) Add ∞ ⊑

(⊔
𝑉 ≠ ∩ ⊔

𝑉 𝜄
)
to 𝐶 .

(6) Let 𝑉⊥ = (⊔{∞}) ∩ 𝑉 𝜄 . This is the set of size variables that we have determined to both be
infinite and noninfinite. If 𝑉⊥ is empty, then return 𝐶 .

(7) Otherwise, let 𝑉 = 𝑉⊥ ∩ (𝑉 ∗ \ {𝜏}), and fail with RecCheckFail(𝑉). This is the set of contra-
dictory position size variables excluding 𝜏 , which we can remove fromV∗ in RecCheckLoop.
If 𝑉 is empty, there are no position size variables left to remove, so the check and therefore
the size inference algorithm fails.

Disregarding closure operations and set operations like intersection and difference, the time
complexity of a single pass is𝑂 (∥𝑉 ∥∥𝐶 ∥), where𝑉 is the set of size variables appearing in𝐶 . This
comes from the negative-cycle finding in (3).

4.4 Well-Formedness
A self-contained chunk of code, be it a file or a module, consists of a sequence of (co)inductive
definitions (signatures) and programs (global declarations). For our purposes, we assume that there

19

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

is a singular well-formed signature defined independently.Then we need to perform size inference
on each declaration of Γ𝐺 in order. This is given by Rules a-global-nil, a-global-assum, and a-
global-def in Figure 17. The first two are straightforward.

In Rule a-global-def, we obtain two types: 𝑢, the inferred sized type of the definition body,
and 𝑡 , its sized declared type. Evidently, 𝑢 must subtype 𝑡 . Furthermore, only 𝑢 has position size
variables due to the body 𝑒 , so we use eraseToGlobal to replace the size variables of 𝑡 in the same
locations as the position size variables of 𝑢 with global annotations. For instance, if V∗ = {𝜏1, 𝜏2}

eraseToGlobal(Nat𝜏1 → Nat𝜐1 → Nat𝜏2 ,Nat𝜐2 → Nat𝜐3 → Nat𝜐4) = Nat𝜄 → Nat∞ → Nat𝜄

Note that we cannot simply globally erase 𝑢 and use that in the global definition type, since 𝑡 may
be a more general type than 𝑢.

5 METATHEORY OF CIC∗̂ AND FUTUREWORK
In this section, we describe the metatheory of CIĈ∗. Some of the metatheory is inherited or essen-
tially similar to past work [Barthe et al. 2006; Sacchini 2011, 2013], although we must adapt key
proofs to account for differences in subtyping and definitions. Complete proofs for a language like
CIĈ∗ are too involved to present in full, so we provide key lemmas and proof sketches; full proofs
can be found in the supplementary material.

In short, CIĈ∗ satisfies confluence and subject reduction (with the same caveats as in CIC for
cofixpoints). Proofs of strong normalization and logical consistency for CIĈ∗, and soundness and
completeness of the size inference algorithm with respect to the typing rules, remain future work.
We conjecture how the proofs of strong normalization and consistency should proceed based on
past work [Barthe et al. 2006; Sacchini 2011, 2013].

The metatheoretical investigations provide many interesting questions, so we discuss future
work in context as these questions arise.

5.1 Confluence
We define▷ as the least compatible closure of 𝛽𝜁𝛿Δ𝜄𝜇𝜈-reduction and▷∗ as the reflexive–transitive
closure of ▷. Precise definitions are also provided in Appendix A.

TheoRem 5.1 (Confluence). Let 𝑒, 𝑒1,2 be terms. If 𝑒1 ∗◁ 𝑒 ▷∗ 𝑒2 then 𝑒1 ▷∗ 𝑒 ′ ∗◁ 𝑒2 for a term 𝑒 ′.

PRoof SKetch. We use the Takahashi translation technique due to Komori et al. [2014], which
is a simplification of the standard parallel reduction technique. The proof is straightforward. □

5.2 Subject Reduction
Subject reduction does not hold in CIC, or in Coq, due to cofixpoints2. In essence, the problem
is that 𝜈-reduction can either be guarded to reduce under a case expression (dual to 𝜇-reduction
which only reduces a fixpoint when applied to a constructor), enabling strong normalization but
breaking subject reduction, or unrestricted, enabling subject reduction to hold but breaking strong
normalization.

CIĈ∗, following Coq, implements the guarded 𝜈-reduction, so cofixpoints do not satisfy sub-
ject reduction. Ongoing work in Coq seeks to change the semantics of cofixpoints to enable both
subject reduction and strong normalization.

With unrestricted 𝜈-reduction, subject reduction and confluence hold for cofixpoints, but we
conjecture strong normalization must fail. Sacchini [2013] provides an nice discussion of this in a
similar context.
2Discussion and counterexample can be found here: https://github.com/coq/coq/issues/5288/

20

https://github.com/coq/coq/issues/5288/

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

TheoRem 5.2 (Subject Reduction). Let Σ be a well-formed signature. Further, define 𝜈-reduction
to allow unrestricted unfolding of cofixpoints. Then, Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑡 and 𝑒 ▷ 𝑒 ′ implies Σ, Γ𝐺 , Γ ⊢ 𝑒 ′ : 𝑡 .

PRoof SKetch. By induction on Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑡 . Most cases are straightforward.
The case for Rule case where 𝑒 ▷ 𝑒 ′ by 𝜄-reduction relies on the fact if 𝑥 is the name of a (co)-

inductive types and appears strictly positively in 𝑡 then 𝑥 appears covariantly in 𝑡 . (This is only
true without nested (co)inductive type, which recall, CIĈ∗ disallows in well-formed signatures.)

The case for Rule case and 𝑒 (guarded) 𝜈-reduces to 𝑒 ′ requires an unrestricted 𝜈-reduction.
After guarded 𝜈-reduction, the target (a cofixpoint) appears in the motive unguarded by a case
expression, but must be unfolded to re-establish typing the type 𝑡 . □

Recall from Section 3 that we disallow nested (co)inductive types in our definition of strict
positivity. Unfortunately, as suggested in the above proof, subject reduction breaks in the presence
of nested (co)inductive types. We present a counterexample shortly. The root cause of this issue
is the removal of polarity annotations from CIĈ to make CIĈ∗ backward compatible with Coq.
In CIĈ , these polarity annotations must be provided by the user in the surface syntax and affect
subtyping for (co)inductive types.

Interestingly, counterexamples seem to be impossible to express in our implementation. The
counterexamples rely on crafting a set of bad annotations, but the user cannot provide annota-
tions directly and is forced to rely on size inference. The size inference algorithm seems unable
to produce these bad annotations. We conjecture that CIC∗̂ programs whose size annotations are
generated by the algorithm do enjoy subject reduction. Future study of the inference algorithm
should provide insight on how to add nested (co)inductive types to CIĈ∗.

To see how subject reduction for CIC∗̂ fails in the presence of nested (co)inductive types, con-
sider the following example. Again, we omit □ in nonempty environments and brackets in single-
ton vectors, and we use a Coq-like syntax for case branches.

Σ = ((𝐴 : Type)(𝑥 : 𝐴) ⊢ Eq : 𝐴 → Type B eq_refl : Eq 𝐴 𝑥 𝑥)
(□ ⊢ N : Type B ⟨O : N, S : (𝑛 : N) → (𝑛=𝑛 : Eq N 𝑛 𝑛) → N⟩)

Note that although N behaves extensionally likeN, it cannot be encoded without the use of nested
inductive types due to the (𝑛=𝑛 : Eq N 𝑛 𝑛) argument of S. It is possible to see that

Σ,□,□ ⊢
©­­­«

case𝜆_:N.N (S O (eq_refl N𝜐+1 O)) of
| O ⇒ O
| S ⇒ 𝜆𝑛 : N. 𝜆𝑛=𝑛 : Eq N 𝑛 𝑛.

seq (eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛) O

ª®®®¬ : N
∞ (case-ex)

where 𝜐 is a size variable, seq = 𝜆_ : _. 𝜆𝑛 : N. 𝑛, and we use the shorthand 𝜐 + 𝑘 to mean the 𝑘-th
successor stage of 𝜐. However, this case expression reduces to the ill-typed expression in Σ,□,□:(

𝜆𝑛 : N. 𝜆𝑛=𝑛 : Eq N 𝑛 𝑛.
seq (eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛) O

)
O (eq_refl N𝜐+1 O) (case-red-ex)

In detail, first observe that the original case expression is well-typed as follows. By Rule con-
stR and Rule conv, Σ,□,□ ⊢ S O (eq_refl N𝜐+1 O) : N𝜐+2 ≤ N𝜐+3. Now, let ℘ = 𝜆_ : N𝜐+3 .N∞,
and let 𝑒O, 𝑒S respectively be the O and S branches in the case expression above. Put 𝑠 = 𝜐 +
2 so that Σ,□,□ ⊢ S O (eq_refl N𝜐+1 O) : N𝑠+1. We can show Σ,□,□ ⊢ 𝑒O = O : N∞ ≈
branchType(Σ, ·,O, 𝑠, ℘).

Σ,□, (𝑛 : N𝑠)(𝑛=𝑛 : Eq∞ N𝑠 𝑛 𝑛) ⊢ (eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛) : Eq∞ N𝑠 𝑛 𝑛

by Rule case and Rule abs and because 𝑠 = 𝜐 + 2 by choice. Since seq returns its second argument,
which is O in 𝑒S, it follows that Σ,□,□ ⊢ 𝑒S : N∞ ≈ branchType(Σ, ·, S, 𝑠, ℘). This verifies (case-ex).

21

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

To see that (case-red-ex) is not well-typed, note that eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛 can only be
well-typed in a Γ such that Σ,□, Γ ⊢ 𝑛=𝑛 : Eq∞ N𝜐+2 𝑛 𝑛, whichmeans that (𝑛=𝑛 : Eq_ N𝜐+2 𝑛 𝑛) ∈ Γ
because Rule conv and Rule st-app states that arguments must be convertible (here Eq_ means the
annotation for Eq is irrelevant to our discussion). In other words, all attempts to type 𝑒S in Σ,□,□
will result in Σ,□,□ ⊢ 𝑒S : Π𝑛 : N_.Π𝑛=𝑛 : Eq_ N𝜐+2 𝑛 𝑛.N_. On the other hand, since Rule conv
and Rule st-app states that arguments must be convertible in order to have subtyping, all attempts
to type (eq_refl N𝜐+1 O O) in Σ,□,□ will result in Σ,□,□ ⊢ (eq_refl N𝜐+1 O O) : Eq_ N𝜐+1 _ _.
Since N𝜐+1 0 N𝜐+2, all attempts to type (case-red-ex) will fail, thus breaking subject reduction.

As observed, the key to this counterexample breaking subject reduction is the eq_refl (Eq∞
N𝜐+2 𝑛 𝑛) 𝑛=𝑛 subterm of 𝑒S: it exploits the fact that subtyping between inductive types requires
the parameters to be convertible, as specified in Rule st-app. A straightforward attempt to fix
this issue would be to modify Rule st-app so that 𝑡1 𝑡2 ≤ 𝑡 ′1 𝑡 ′2 provided that 𝑡𝑖 ≤ 𝑡 ′𝑖 for 𝑖 =
1, 2. However, since CIĈ∗ allows both universe subtyping and size subtyping, and the universe
subtyping rules in the Coq manual [The Coq Development Team 2020] require arguments and
parameters to be convertible, this straightforward solution may cause unforeseen problems with
universe subtyping.

Alternatively, we may take inspiration from CIĈ , which satisfies subject reduction. This issue
is not present in CIĈ because it syntactically requires parameters supplied to constructors to be
bare, so the above example (specifically the term eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛) would not conform to
CIĈ grammar. However, this requires constructors to be treated separately from normal functions
in applications and thus more changes to the Coq kernel with unforeseen consequences.

Another possible solution is to consider the principle of “size irrelevance” in subtyping and type
equality checking. This idea, investigated by Abel et al. [2017], essentially allows the type system
to ignore sizes where they act as type arguments. That is, size information will be irrelevant in
constructor applications and term-level function applications. For instance, the size information
∞, 𝜐 + 2 in eq_refl (Eq∞ N𝜐+2 𝑛 𝑛) 𝑛=𝑛 will be treated as irrelevant, thus allowing us to type this
term in an environment where 𝑛=𝑛 has type Eq_ N𝜐+1 _ _. However, sizes still remain relevant in
places where they act as regular arguments, such as 𝜐 in N𝜐 . At this point, how such a solution
would be expressed in CIC∗̂ and its metatheoretical implications remain unclear.

5.3 Soundness and Completeness of Size Inference
The size inference algorithm assigns fresh size variables to each (co)inductive type and produces a
set of size constraints; however, the typing rules of CIĈ∗ state a relationship between a particular
sized term and its sized type. To prove soundness and completeness, we need the notion of a size
substitution and statisfaction of a constraint system.
Definition 5.3 (Size substitutions and constraint satisfaction).

• A size substitution 𝜌 : 𝑆 → 𝑆 is a map from size expressions to size expressions. The size
substitution [𝜐 B 𝑠] maps the size variable 𝜐 to the size expression 𝑠 and maps every other
size expresssion to itself. We write 𝜌 (𝑠) to denote the size expression that 𝑠 is mapped to by
𝜌 . We define (𝜌1 ◦ 𝜌2)(𝑠) = 𝜌1 (𝜌2 (𝑠)) and 𝜌 (𝑉) = {𝑠 : ∀𝑠 ′ ∈ 𝑉 , 𝜌 (𝑠 ′) = 𝑠}.
Additionally, we write 𝜌𝑒 to denote the sized term 𝑒 with every size expression in 𝑒 replaced
by its mapping and 𝜌Γ to denote the environment Γ with every size expression in the sized
terms of its codomain replaced by its mapping.

• A size substitution 𝜌 satisfies the constraint system 𝐶 , denoted 𝜌 ⊨ 𝐶 , if for every con-
straint 𝑠1 ⊑ 𝑠2 ∈ 𝐶 , 𝜌 (𝑠1) ⊑ 𝜌 (𝑠2) holds.

22

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Soundness and completeness of the size inference algorithm rely on the soundness and com-
pleteness of RecCheck, stated below. We refer the reader to Barthe et al. [2005] for the full proofs
of SRC and CRC.

TheoRem 5.4 (Soundness of RecChecK (SRC)). If RecCheck(𝐶 ′, 𝜏,𝑉 ∗,𝑉 ≠) = 𝐶 , for every 𝜌 such
that 𝜌 ⊨ 𝐶 , given a fresh stage variable 𝜐, there exists a 𝜌 ′ such that the following all hold:

• 𝜌 ′ ⊨ 𝐶 ′ and 𝜌 ′(𝜏) = 𝜐
• For all 𝜐 ′ ∈ 𝑉 ≠, ([𝜐 B 𝜌 (𝜏)] ◦ 𝜌 ′)(𝜐 ′) = 𝜌 (𝜐 ′)
• For all 𝜏 ′ ∈ 𝑉 ∗, ([𝜐 B 𝜌 (𝜏)] ◦ 𝜌 ′)(𝜏 ′) ⊑ 𝜌 (𝜏 ′)
• ⌊𝜌 ′(𝑉 ∗)⌋ = 𝜐 and ⌊𝜌 ′(𝑉 ≠)⌋ ≠ 𝜐

Intuitively, if RecCheck succeeds with𝐶 , then given any substitution 𝜌 that satisfies𝐶 , there is another
substitution 𝜌 ′ that satisfies the original constraint system 𝐶 ′ while also not violating any of the
properties that RecCheck enforces to produce 𝐶 .

TheoRem 5.5 (Completeness of RecChecK (CRC)). Suppose the following all hold:
• 𝜌 ⊨ 𝐶 ′ and 𝜌 (𝜏) = 𝜐
• ⌊𝜌 (𝑉 ∗)⌋ = 𝜐 and ⌊𝜌 (𝑉 ≠)⌋ ≠ 𝜐

Then RecCheck(𝐶 ′, 𝜏,𝑉 ∗,𝑉 ≠) = 𝐶 and 𝜌 ⊨ 𝐶 .
We can now state soundness and completeness of the checking, inference, and well-formedness

portions of the algorithm.

ConjectuRe 5.6 (Soundness). Let Σ be some fixed signature.
(1) If 𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇐ 𝑡 ⇝ 𝐶 ′, 𝑒 , then for every 𝜌 such that 𝜌 ⊨ 𝐶 ′, we have Σ, Γ𝐺 , 𝜌Γ ⊢ 𝜌𝑒 : 𝜌𝑡 .
(2) If 𝐶, Γ𝐺 , Γ ⊢ 𝑒◦ ⇝ 𝐶 ′, 𝑒 ⇒ 𝑡 , then for every 𝜌 such that 𝜌 ⊨ 𝐶 ′, we have Σ, Γ𝐺 , 𝜌Γ ⊢ 𝜌𝑒 : 𝜌𝑡 .
(3) If Γ◦𝐺 ⇝ Γ𝐺 , then WF(Σ, Γ𝐺 ,□) holds.
PRoof SKetch. By simultaneous induction on the checking and inference judgements of the

algorithm. We refer the reader to Barthe et al. [2005]; Sacchini [2013] for the bulk of the proof
details. SRC is used in the cases of Rule a-fix and Rule a-cofix: if RecCheckLoop succeeds, then
there is some position annotation of the bare (co)fixpoint type such that RecCheck succeeds, and
we can apply SRC. We have added two new typing rules, Rules vaR-def and const-def, and we
conjecture that the algorithm is sound with respect to these two rules as well. (3) requires the
additional property that if 𝑢 ⪯ 𝑡 succeeds then 𝑢 ≤ 𝑡 . □

Soundness remains a conjecture. Key properties that remain to be proven includewell-foundedness
of environments in the leaf rules of inference, and showing that the premises of Rules vaR-def and
const-def hold in Rules a-vaR-def and a-const-def, respectively. These are both new additions
to the typing rules in contrast to those of F̂ [Barthe et al. 2005], so the soundness proof techniques
must be adapted as well.

ConjectuRe 5.7 (Completeness). Let Σ be some fixed signature.
(1) If Σ, Γ𝐺 , 𝜌Γ ⊢ 𝑒 : 𝜌𝑡 and 𝜌 ⊨ 𝐶 , then there exist 𝐶 ′, 𝜌 ′, 𝑒 ′ such that ∀𝜐 ∈ SV(Γ, 𝑡), 𝜌 (𝜐) = 𝜌 ′(𝜐)

and 𝜌 ′ ⊨ 𝐶 ′ and 𝜌 ′𝑒 ′ = 𝑒 and 𝐶, Γ𝐺 , Γ ⊢ |𝑒 | ⇐ 𝑡 ⇝ 𝐶 ′, 𝑒 ′.
(2) If Σ, Γ𝐺 , 𝜌Γ ⊢ 𝑒 : 𝑡 and 𝜌 ⊨ 𝐶 , then there exist 𝐶 ′, 𝜌 ′, 𝑒 ′, 𝑡 ′ such that ∀𝜐 ∈ SV(Γ), 𝜌 (𝜐) = 𝜌 ′(𝜐)

and 𝜌 ′ ⊨ 𝐶 ′ and 𝜌 ′𝑒 ′ = 𝑒 and 𝜌 ′𝑡 ′ ≤ 𝑡 and 𝐶, Γ𝐺 , Γ ⊢ |𝑒 | ⇝ 𝐶 ′, 𝑒 ′ ⇒ 𝑡 ′.
(3) If WF(Σ, Γ𝐺 ,□), then |Γ𝐺 | ⇝ Γ𝐺 .

PRoof SKetch. By induction on the typing judgement. We refer the reader to Barthe et al.
[2005]; Sacchini [2013] for the bulk of the proof details. We conjecture that if a (co)fixpoint with
position-annotated types 𝑡𝑘 is well-typed, then RecCheckLoop can find position annotations for

23

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

|𝑡𝑘 | that have at least the same position annotations as 𝑡𝑘 such that RecCheck succeeds, so that we
can apply CRC. (3) requires the additional property that if 𝑡 ′ ≤ 𝑡 then 𝑡 ′ ⪯ 𝑡 will succeed. □

Completeness also remains a conjecture.The core of the proof relies on a property of RecCheck-
Loop that we have yet been able to figure out how to prove. Further investigation into the com-
pleteness proof of RecCheck from F̂ may yield a proof technique.

5.4 Strong Normalization and Logical Consistency
Our ultimate goal and primary futurework is to prove strong normalization and logical consistency
of CIĈ∗.

ConjectuRe 5.8 (StRongNoRmalization). If Σ, Γ𝐺 , Γ ⊢ 𝑒 : 𝑡 then 𝑒 contains no infinite reduction
sequences.

ConjectuRe 5.9 (Logical Consistency). The type Π𝑝 : Prop. 𝑝 is uninhabited in CIĈ∗.

Taking inspiration from Barthe et al. [2006]; Sacchini [2011, 2013], we conjecture that these
statements can be proven using the Λ-set technique from Altenkrich [1993]; Melliès and Werner
[1998]. Our proof attempt is still ongoing.

However, with coinduction and cofixpoints, results from Sacchini [2013] suggest that subject
reduction and strong normalization may not be true at the same time, because subject reduction
appears to require unrestricted unfolding of cofixpoints, which breaks normalization.

Recall that Coq itself is not strongly normalizing, only weakly normalizing.3

Definition cbv_omega := fix f (n : nat) := let x := f n in O.

This is a side-effect of relaxing the guard condition to enable more sound programs to type check.
Ideally, sufficiently expressive sized typing will allow us to replace the guard condition entirely
and regain strong normalization in Coq.

However, an intermediate goal may be to achieve only weak normalization. This would also
maintain backward compatibilitywith Coq, although it is unclear if counterexamples like the above
are ever desired in user programs.

6 RELATEDWORK
This work is based on CIĈ [Barthe et al. 2006], which describes CIC with sized types and a size
inference algorithm. It assumes that position annotations are given by the user, requires each
parameter of (co)inductive types to be assigned polarities, and deals only with terms. We have
added on top of it global declarations, local definitions, constants and variables annotated by a
vector of size expressions, their 𝛿-/Δ-reductions, an explicit treatment of mutually-defined (co)-
inductive types and (co)fixpoints, and an intermediate procedure RecCheckLoop to handle missing
position annotations, while removing parameter polarities and subtyping rules based on these
polarities.

The language CIĈ [Sacchini 2011] is similar to CIĈ , described in greater detail, but with one
major difference: CIĈ disallows size variables in the bodies of abstractions, in the arguments of
applications, and in case expression branches, making CIĈ a strict subset of CIĈ . Any size expres-
sions found in these locations must be set to∞. This “solves” the problem discussed in Section 2 of
how to handle defined variables used in (co)fixpoints by disallowing it entirely. In practice, such
as in Coq’s standard library, aliases are often defined for (co)inductive types, so we designed CIĈ∗
to accommodate (co)fixpoints defined over aliases and other type-level computations.
3At least, the underlying calculus is not. The counterexample “normalizes” to a stack overflow on machine with finite
memory.

24

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

𝜐 : Size
size-vaR

∞ : Size
size-infty

𝑠 : Size
↑ 𝑠 : Size

size-succ
𝑟 : Size 𝑠 : Size

𝑟 ⊔𝑠 𝑠 : Size
size-max

𝑟 : Size<𝑠
𝑟 : Size

size-lt
Size : SizeUniv

sizeuniv-size
𝑠 : Size

Size<𝑠 : SizeUniv
sizeuniv-size-lt

Fig. 18. Typing rules for sizes in Agda

The implementation of RecCheck comes from F̂ [Barthe et al. 2005], an extension of System
F with type-based termination using sized types. Rules relating to coinductive constructions and
cofixpoints come from the natural extension of CC𝜔 [Sacchini 2013], which describes only infinite
streams. The size inference algorithm is based on those of CIĈ , CC𝜔 , and CIĈ𝑙 [Sacchini 2014].

Whereas our size algebra supports only a successor operation, linear sized types in CIĈ𝑙 extends
the algebra by including size expressions of the form 𝑛 · 𝑆 , so that all annotations are of the form
𝑛 ·𝜐+𝑚, where𝑚 is the number of “hats”. Unfortunately, this causes the time complexity of its Rec-
Check procedure to be worst-case doubly exponential in the number of size variables. However,
the set of typeable (and therefore terminating or productive) functions is expanded compared to
CIĈ∗; functions such as list-doubling could be typed as size-preserving in addition to being termi-
nating. If successor sized types prove practical, augmenting the type system to linear sized types
would be worth investigating, depending on whether common programs would cause worst-case
behaviour. The most significant change required would be in RecCheck, which must then solve a
set of constraints in Presburger arithmetic.

Well-founded sized types in CIC⊑̂ [Sacchini 2015b] are yet another extension of successor sized
types. The unpublished manuscript contains a type system, some metatheoretical results, and a
size inference algorithm. In essence, it preserves subject reduction for coinductive constructions,
and also expands the set of typeable functions.

The proof assistant Agda implements sized types as user-provided size parameters, similar to
type parameters. Correspondingly, sizes have the type Size, while Size itself has the type SizeUniv,
which is its own type. Figure 18 presents the typing rules for Size; the operator ↑ · corresponds to
our ·̂, while · ⊔𝑠 · takes the maximum of two sizes. Additionally, Agda defines the size constructor
Size<, which allows the user to specify a size constraint 𝑟 ⊑ 𝑠 with the annotation 𝑟 : Size<𝑠 .
Whereas CIĈ ’s philosophy is to hide all size annotations from the user with a focus on size infer-
ence, Agda opts for allowing users to explicitly write size annotations and treat them almost like
terms, yielding greater flexibility in deciding how things should be typed. However, this approach
is a non-starter if we wish to maintain backward compatibility with Coq.

7 CONCLUSION
We have presented a design and implementation of sized types for Coq. Our work extends the
core language and type checking algorithm of prior theoretical work on sized types for CIC with
pragmatic features found in Coq, such as global definitions, and extends the inference algorithm
to infer sizes over completely unannotated CIC terms to enable backward compatibility. We imple-
ment the design presented in this paper as an extension to Coq’s kernel available in the anonymous
supplementary material. The design and implementation can be used alone or in conjunction with
syntactic guard checking to maximize typeability and compatibility.

25

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

REFERENCES
Andreas Abel, Andrea Vezzosi, andTheoWinterhalter. 2017. Normalization by Evaluation for Sized Dependent Types. Proc.

ACM Program. Lang. 1, ICFP, Article 33 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110277
Thorsten Altenkrich. 1993. Constructions, Inductive Types and Strong Normalization. Theses. University of Edinbrugh.

https://www.cs.nott.ac.uk/~psztxa/publ/phd93.pdf
Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. 2005. Practical inference for type-based termination in a poly-

morphic setting. In Typed Lambda Calculi and Applications (Lecture Notes in Computer Science, Vol. 3461), Urzyczyn, P
(Ed.). Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany, 71–85. https://doi.org/10.1007/11417170_7

Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. 2006. CIĈ : Type-Based Termination of Recursive Definitions
in the Calculus of Inductive Constructions. In Logic for Programming, Artificial Intelligence, and Reasoning, Proceedings
(Lecture Notes in Artificial Intelligence, Vol. 4246), Hermann, M and Voronkov, A (Ed.). Springer-Verlag Berlin, Heidel-
berger Platz 3, D-14197 Berlin, Germany, 257–271. https://doi.org/10.1007/11916277_18

Yuichi Komori, Naosuke Matsuda, and Fumika Yamakawa. 2014. A Simplified Proof of the Church—Rosser Theorem. Stud.
Log. 102, 1 (Feb. 2014), 175–183. https://doi.org/10.1007/s11225-013-9470-y

Paul-André Melliès and Benjamin Werner. 1998. A Generic Normalisation Proof for Pure Type Systems. Research Report
RR-3548. INRIA. https://hal.inria.fr/inria-00073135 Projet COQ.

Jorge Luis Sacchini. 2011. On type-based termination and dependent patternmatching in the calculus of inductive constructions.
Theses. École Nationale Supérieure des Mines de Paris. https://pastel.archives-ouvertes.fr/pastel-00622429

Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Definitions in the Calculus of Constructions. In 2013 28TH
Annual IEEE/ACM Symposium on Logic in Computer Science (LICS) (IEEE Symposium on Logic in Computer Science). IEEE,
345 E 47th St., New York, NY 10017 USA, 233–242. https://doi.org/10.1109/LICS.2013.29

Jorge Luis Sacchini. 2014. Linear Sized Types in the Calculus of Constructions. In Functional and Logic Programming, FLOPS
2014 (Lecture Notes in Computer Science, Vol. 8475), Codish, M and Sumii, E (Ed.). Springer-Verlag Berlin, Heidelberger
Platz 3, D-14197 Berlin, Germany, 169–185. https://doi.org/10.1007/978-3-319-07151-0_11

Jorge Luis Sacchini. 2015a. jsacchini/cicminus. https://doi.org/10.5281/zenodo.3928999
Jorge Luis Sacchini. 2015b. Well-Founded Sized Types in the Calculus of (Co)Inductive Constructions. (2015). https:

//web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf Unpub-
lished paper.

The Coq Development Team. 2020. The Coq Proof Assistant, version 8.11.0. https://doi.org/10.5281/zenodo.3744225

26

https://doi.org/10.1145/3110277
https://www.cs.nott.ac.uk/~psztxa/publ/phd93.pdf
https://doi.org/10.1007/11417170_7
https://doi.org/10.1007/11916277_18
https://doi.org/10.1007/s11225-013-9470-y
https://hal.inria.fr/inria-00073135
https://pastel.archives-ouvertes.fr/pastel-00622429
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/978-3-319-07151-0_11
https://doi.org/10.5281/zenodo.3928999
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://web.archive.org/web/20160606143713/http://www.qatar.cmu.edu/~sacchini/well-founded/well-founded.pdf
https://doi.org/10.5281/zenodo.3744225

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Γ𝐺 , Γ ⊢ 𝑇 ▷𝛽𝜁𝛿Δ𝜄𝜇𝜈 𝑇

Γ𝐺 , Γ ⊢ (𝜆𝑥 : 𝑡 . 𝑒1) 𝑒2 ▷𝛽 𝑒1 [𝑥 B 𝑒2]
𝛽

Γ𝐺 , Γ ⊢ let 𝑥 : 𝑡 B 𝑒1 in 𝑒2 ▷𝜁 𝑒2 [𝑥 B 𝑒1]
𝜁

(𝑥 : 𝑡 B 𝑒) ∈ Γ

Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ ▷𝛿 |𝑒 |∞ [∞𝑖 B 𝑠𝑖]
𝛿

(Def 𝑥 : 𝑡 B 𝑒.) ∈ Γ𝐺

Γ𝐺 , Γ ⊢ 𝑥 ⟨𝑠𝑖 ⟩ ▷Δ 𝑒 [∞𝑖 B 𝑠𝑖]
Δ

Γ𝐺 , Γ ⊢ case℘ (𝑐ℓ 𝑝 𝑎) of ⟨𝑐 𝑗 ⇒ 𝑒 𝑗 ⟩ ▷𝜄 𝑒ℓ 𝑎
𝜄

∥𝑏∥ = 𝑛𝑚 − 1 𝑞𝑖 = fix⟨𝑛𝑘 ⟩,𝑖 ⟨𝑓𝑘 : 𝑡𝑘 B 𝑒𝑘⟩
Γ𝐺 , Γ ⊢ 𝑞𝑚 𝑏 (𝑐 𝑝 𝑎) ▷𝜇 𝑒𝑚 [𝑓𝑘 B 𝑞𝑘] 𝑏 (𝑐 𝑝 𝑎)

𝜇

𝑞𝑖 = cofix𝑖 ⟨𝑓𝑘 : 𝑡𝑘 B 𝑒𝑘⟩
Γ𝐺 , Γ ⊢ case℘ (𝑞𝑚 𝑏) of ⟨𝑐 𝑗 ⇒ 𝑎 𝑗 ⟩ ▷𝜈 case℘ (𝑒𝑚 [𝑓𝑘 B 𝑞𝑘] 𝑏) of ⟨𝑐 𝑗 ⇒ 𝑎 𝑗 ⟩

𝜈

Fig. 19. Reduction rules

Γ𝐺 , Γ ⊢ 𝑇 ▷𝛽𝜁𝛿Δ𝜄𝜇𝜈′ 𝑇 ...

𝑞𝑖 = cofix𝑖 ⟨𝑓𝑘 : 𝑡𝑘 B 𝑒𝑘⟩
Γ𝐺 , Γ ⊢ 𝑞𝑚 ▷𝜈′ 𝑒𝑚 [𝑓𝑘 B 𝑞𝑘]

𝜈 ′

Fig. 20. Reduction rules (with unrestricted cofixpoint reduction)

Γ𝐺 , Γ ⊢ 𝑇 ≈ 𝑇

Γ𝐺 , Γ ⊢ 𝑒1 ▷∗ 𝑒
Γ𝐺 , Γ ⊢ 𝑒2 ▷∗ 𝑒
Γ𝐺 , Γ ⊢ 𝑒1 ≈ 𝑒2

≈-▷∗

Γ𝐺 , Γ ⊢ 𝑒1 ▷∗ 𝜆𝑥 : 𝑡 . 𝑒
Γ𝐺 , Γ ⊢ 𝑒2 ▷∗ 𝑒 ′2

Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑒 ≈ 𝑒 ′2 𝑥

Γ𝐺 , Γ ⊢ 𝑒1 ≈ 𝑒2
≈-𝜂-l

Γ𝐺 , Γ ⊢ 𝑒1 ▷∗ 𝑒 ′1
Γ𝐺 , Γ ⊢ 𝑒2 ▷∗ 𝜆𝑥 : 𝑡 . 𝑒
Γ𝐺 , Γ(𝑥 : 𝑡) ⊢ 𝑒 ′1 𝑥 ≈ 𝑒

Γ𝐺 , Γ ⊢ 𝑒1 ≈ 𝑒2
≈-𝜂-R

Fig. 21. Convertibility rules

A REDUCTION, CONVERTIBILITY, TAKAHASHI TRANSLATION
Figure 19 lists the complete definitions for all reduction rules, including our new rules for 𝛿- and
Δ-reduction. Notice that in fixpoints, the 𝑛𝑚th recursive argument needs to be an applied con-
structor, while cofixpoints can only be reduced as a case expression target. These conditions are
required for strong normalization. However, this restricted cofixpoint unfolding causes issues with
subject reduction [Sacchini 2013]. Figure 20 presents an alternate unrestricted nonterminating 𝜈 ′-
reduction of cofixpoints outside of case expressions so that subject reduction holds at the cost of
normalization.

We define ▷ as the least compatible closure of ▷𝛽𝜁𝛿Δ𝜄𝜇𝜈 , ▷𝑛 as the 𝑛-step reduction of ▷, and
▷∗ as the reflexive–transitive closure of ▷. Convertibility (≈) is the symmetric closure of ▷∗ up to
𝜂-expansion, and is formally defined in Figure 21.

The Takahashi translation 𝑒† of a term 𝑒 [Komori et al. 2014] is used in our proof of confluence.
Informally, we define it as the simultaneous single-step reduction of all 𝛽𝜁𝛿Δ𝜄𝜇𝜈-redexes of 𝑒 in
left-most inner-most order. We further define 𝑒𝑛† as the 𝑛-step Takahashi translation of 𝑒 .

27

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

POPL’21, 17 – 22 January 2021, Copenhagen, Denmark Anon.

B WELL-FORMEDNESS OF (CO)INDUCTIVE DEFINITIONS
In this section we define what it means for a (co)inductive definition to be well-formed, including
some required auxilliary definitions. A signature is thenwell-formed if each of its (co)inductive def-
initions are well-formed. Note that although we prove subject reduction for CIC∗̂ without nested
inductive types, we include their definitions for completeness.

Definition B.1 (Strict Positivity). Given some existing sigature Σ, the variable 𝑥 occurs strictly
positively in the term 𝑡 , written 𝑥 ⊕ 𝑡 , if any of the following holds:

• 𝑥 ∉ FV(𝑡)
• 𝑡 ≈ 𝑥 𝑒 and 𝑥 ∉ FV(𝑡)
• 𝑡 ≈ Π𝑥 : 𝑢. 𝑣 and 𝑥 ∉ FV(𝑢) and 𝑥 ⊕ 𝑣

If nested inductive types are permitted, then 𝑥 ⊕ 𝑡 may hold if the following also holds:
• 𝑡 ≈ 𝐼∞

𝑘
𝑝 𝑎 where ⟨Δ𝑝 ⊢ 𝐼𝑖 _ : _⟩ B ⟨𝑐 𝑗 : ΠΔ 𝑗 . 𝐼 𝑗 dom(Δ𝑝) 𝑡 𝑗 ⟩ ∈ Σ for some 𝑘 ∈ 𝚤 and all of

the following hold:
– ∥𝑝 ∥ = ∥Δ𝑝 ∥
– 𝑥 ∉ FV(𝑎)
– For every 𝑗 , if 𝐼 𝑗 = 𝐼𝑘 , then 𝑥 ⃝⊕ 𝐼𝑘 (ΠΔ 𝑗 . 𝐼 𝑗 𝑝 𝑡 𝑗) [dom(Δ𝑝) B 𝑝]

Definition B.2 (Nested Positivity). Given some existing signature Σ, the variable 𝑥 is nested posi-
tive in 𝑡 of 𝐼𝑘 , written 𝑥 ⃝⊕ 𝐼𝑘 𝑡 , if ⟨Δ𝑝 ⊢ 𝐼𝑖 _ : _⟩ B _ ∈ Σ for some 𝑘 ∈ 𝚤 and any of the following
holds:

• 𝑡 ≈ 𝐼∞
𝑘

𝑝 𝑎 and ∥𝑝 ∥ = ∥Δ𝑝 ∥ and 𝑥 ∉ FV(𝑎)
• 𝑡 ≈ Π𝑥 : 𝑢. 𝑣 and 𝑥 ⊕ 𝑢 and 𝑥 ⃝⊕ 𝐼𝑘 𝑣

In short, 𝑥 ⃝⊕ 𝐼 𝑡 if 𝑡 ≈ ΠΔ. 𝐼 𝑝 𝑎 and 𝑥 ⊕ Δ and 𝑥 ∉ FV(𝑎).
Definition B.3 (Constructor Type). The term 𝑡 is a constructor type for 𝐼 when:
• 𝑡 = 𝐼 𝑒; or
• 𝑡 = Π𝑥 : 𝑢. 𝑣 where 𝑥 ∉ FV(𝑢) and 𝑣 is a constructor type for 𝐼 ; or
• 𝑡 = 𝑢 → 𝑣 where 𝑥 ⊕ 𝑢 and 𝑣 is a constructor type for 𝐼 .
Note that in particular, this means that 𝑡 = ΠΔ. 𝐼 𝑒 such that 𝐼 ⊕ 𝑢 for every 𝑢 ∈ codom(Δ), and

the recursive arguments of 𝑡 are not dependent.

Definition B.4 (Well-formedness of (Co)Inductive Definitions). Suppose we have some signature
Σ and some global environment Γ𝐺 . Consider the following (co)inductive definition, where 𝑝 =
dom(Δ𝑝).

Δ𝑝 ⊢ ⟨𝐼𝑖 𝑝 : ΠΔ𝑖 .𝑤𝑖⟩ B ⟨𝑐 𝑗 : ΠΔ 𝑗 . 𝐼 𝑗 𝑝 𝑡 𝑗 ⟩
This (co)inductive definition is well-formed if the following all hold:

(I1). For every 𝑖 , there is some𝑤 ′
𝑖 such that Σ, Γ𝐺 ,Δ𝑝 ⊢ ΠΔ𝑖 .𝑤𝑖 : 𝑤

′
𝑖 holds.

(I2). For every 𝑗 , there is some𝑤 𝑗 such that Σ, Γ𝐺 ,Δ𝑝 (𝐼∞𝑗 : ΠΔ𝑝 .ΠΔ𝑖 .𝑤𝑖) ⊢ ΠΔ 𝑗 . 𝐼
∞
𝑗 𝑝 𝑡 𝑗 : 𝑤 𝑗 holds.

(I3). For every 𝑗 , ΠΔ 𝑗 . 𝐼 𝑗 𝑝 𝑡 𝑗 is a constructor type for 𝐼 𝑗 . Note that this implies 𝐼 𝑗 ⊕ codom(Δ 𝑗).
(I4). For every 𝑖, 𝑗 , all (co)inductive types in the terms codom(Δ𝑝), codom(Δ𝑖), codom(Δ 𝑗) are an-

notated with ∞.

C SUPPLEMENTARY FIGURES
Figure 22 lists the sets Axioms, Rules, and Elims, which are the same as for CIC. Figure 23 cata-
logues the various metafunctions introduced in Section 4.

28

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Practical Sized Typing for Coq POPL’21, 17 – 22 January 2021, Copenhagen, Denmark

Axioms = {(Prop,Type1), (Set,Type1), (Type𝑖 ,Type𝑖+1)}
Rules = {(𝑤, Prop, Prop) : 𝑤 ∈ 𝑈 } ∪ {(𝑤, Set, Set) : 𝑤 ∈ {Prop, Set}}

∪ {(Type𝑖 ,Type𝑗 ,Type𝑘) : 𝑘 = max(𝑖, 𝑗)}
Elims = {(𝑤𝑖 ,𝑤, 𝐼𝑖) : 𝑤𝑖 ∈ {Set,Type},𝑤 ∈ 𝑈 , 𝐼𝑖 ∈ Σ} ∪ {(Prop, Prop, 𝐼𝑖) : 𝐼𝑖 ∈ Σ}

∪ {(Prop,𝑤, 𝐼𝑖) : 𝑤 ∈ 𝑈 , 𝐼𝑖 ∈ Σ, 𝐼𝑖 empty or singleton}

Fig. 22. Universe relations: Axioms, Rules, and Eliminations

axiom : 𝑈 → 𝑈 Produces type of universe
rule : 𝑈 ×𝑈 → 𝑈 Produces universe of product type given universe of

argument and return types
elim : 𝑈 ×𝑈 × I → () Checks that given universe𝑤𝑘 of (co)inductive type

𝐼𝑘 of case expression target can be eliminated to a
type with given universe𝑤 ; can fail

· ⪯ · : 𝑇 ×𝑇 → P(𝑆 × 𝑆) Checks subtypeability and produces a size con-
straint set; can fail

fresh : N+ → V Produces given number of fresh size variables,
putting them into V

decompose : 𝑇 × N0 → Δ ×𝑇 Splits function type into given number of arguments
and return type; can fail

caseSize : I × 𝑆 ×V → P(𝑆 × 𝑆) Given (co)inductive type 𝐼𝑘 , size expression 𝑠 , and
size variable 𝜐𝑘 , returns {𝑠 ⊑ 𝜐𝑘 } if 𝐼𝑘 is inductive
and {𝜐𝑘 ⊑ 𝑠} if 𝐼𝑘 is coinductive

shift : 𝑇 → 𝑇 Replaces each position size annotation by successor
setRecStars : 𝑇 ◦ × N+ → 𝑇 ∗ Given index 𝑛, annotates 𝑛th argument type 𝐼 and

all other argument and return types with same type
𝐼 with position annotations; can fail

setCorecStars : 𝑇 ◦ → 𝑇 ∗ Annotates return argument type 𝐼 and all other ar-
gument types with same type 𝐼 with position anno-
tations; can fail

getRecVar : 𝑇 × N+ → V∗ Given index 𝑛, retrieves position size variable of 𝑛th
argument type; can fail

getCorecVar : 𝑇 → V∗ Retrieve position size variable of return type; can fail
eraseToGlobal : 𝑇 ×𝑇 → 𝑇 𝜄 Given a terms 𝑢 and 𝑡 , erase 𝑡 to a global term such

that global annotations appear in 𝑡 where position
size variables appear in 𝑢

RecCheckLoop : 𝐶 ×V∗ ×𝑇 ×𝑇 → 𝐶 Calls RecChecK recursively, shrinking V∗ each
time; can fail via RecChecK

RecCheck : 𝐶 ×V∗ × P(V∗) × P(V) → 𝐶 Checks termination and productivity using size con-
straints, returning a new set of constraints; can fail

Fig. 23. Summary of metafunctions used in the size inference algorithm

29

	Abstract
	1 Introduction
	2 Overview
	3 CIC^*
	3.1 Syntax
	3.2 Reduction Rules
	3.3 Subtyping Rules
	3.4 Typing Rules

	4 Size Inference
	4.1 Notation
	4.2 Inference Algorithm
	4.3 RecCheck
	4.4 Well-Formedness

	5 Metatheory of CIC^* and Future Work
	5.1 Confluence
	5.2 Subject Reduction
	5.3 Soundness and Completeness of Size Inference
	5.4 Strong Normalization and Logical Consistency

	6 Related Work
	7 Conclusion
	References
	A Reduction, Convertibility, Takahashi Translation
	B Well-Formedness of (Co)Inductive Definitions
	C Supplementary Figures

