
Practical Sized Typing for Coq
Jonathan Chan

Proof assistants based on dependent type theory rely on the

termination of recursive functions and the productivity of

corecursive functions to ensure two important properties:

logical consistency, to disallow proving false propositions;

and decidability of type-checking, to allow checking that a

program proves a given proposition.

In the proof assistant Coq, termination and productivity

are enforced by a guard predicate on fixpoints and cofixpoints
respectively. For fixpoints, recursive calls must be guarded by
destructors; that is, they must be performed on structurally

smaller arguments. For cofixpoints, corecursive calls must be

guarded by constructors; that is, they must be the structural

arguments of a constructor.

The actual implementation of the guard predicate ex-

tends beyond the guarded-by-destructors and guarded-by-

constructors conditions to accept a larger set of terminating

and productive functions. In particular, function calls will

be unfolded (i.e. inlined) in the bodies of (co)fixpoints as

needed before checking the guard predicate. This has a few

disadvantages: firstly, the bodies of these functions are re-

quired, which hinders modular design; and secondly, the

(co)fixpoint bodies may become very large after unfolding,

which can decrease the performance of type-checking. Fur-

thermore, subtle syntactic changes in functions unfolded

by (co)fixpoints can cause the guard predicate to wrongly

reject the program even if the functions still behave the same.

The dependence of guardedness checking on the structure

of functions external to a (co)fixpoint can lead to difficulty

in debugging, especially for larger programs.

An alternative to guard predicates for termination and

productivity enforcement uses sized types. In essence, (co)-

inductive types are annotated with a size annotation, which

can either be some size variable or the successor of another

size annotation, like an arithmetic with only zero and ad-

dition by one. If some object has a type with size 𝑠 , then

the object wrapped in a constructor would have a type with

successor size 𝑠 .

Termination- and productivity-checking is then simply a

type-checking rule that uses size information. For termina-

tion, the type of the recursive call must have a smaller size

than that of the outer fixpoint; for productivity, the outer

cofixpoint must have a larger size than that of the corecursive

call. This ensures that fixpoints act on ever-smaller objects

until reaching a base case, and that cofixpoints produce ever-

larger objects.

With this type-based method, (co)fixpoints only need the

type of a function where it formerly would have needed to

unfold the function body. Additionally, the syntactic form

of the function would have no effect on its type and thus no

effect on the overall typeability of the (co)fixpoint. Some (co)-

fixpoints preserve the size of arguments in ways that aren’t

syntactically obvious may be typed to be sized-preserving,

allowing them to be called inside of (co)recursive calls and

expanding the set of terminating and productive functions

that can be accepted.

Past work on sized types in the Calculus of (Co)Inductive

Constructions (CIC) such as CIĈ [1] and CIĈ [2] describe

type systems where sizes can be inferred and are never pro-

vided by the user in much the same way other type systems

might perform type inference. However, they have some

practical issues:

• They require nontrivial additions to the language, making

existing Coq code incompatible without adjustments that

must be made manually. These include annotations that

mark the positions of (co)recursive and size-preserved

types, and polarity annotations on (co)inductive defini-

tions that describe how subtyping works with respect to

their parameters.

• They require the (co)recursive arguments of (co)fixpoints

to have literal (co)inductive types. With dependent types,

it is possible to write expressions that evaluate to a type

and to use these expressions where one would use types.

However, while these works present dependently-typed

systems, they disallow argument types being expressions

that might otherwise evaluate to (co)inductive types.

• They do not specify how global definitions should be han-

dled. Ideally, size inference should be done on each func-

tion independently for performance reasons.

In this project, we have designed an extension of CIĈ

called CIC∗̂ that resolves these issues without requiring

any changes to the surface syntax of Coq. We have also

designed and implemented a size inference algorithm based

on CIC∗̂ within Coq’s kernel that allows for termination-

and productivity-checking of existing Coq code using sized

types instead of guardedness checking
1
. In our implementa-

tion, we are easily able to accept terminating (co)recursive

functions such as quicksortwhich would otherwise require
user-provided proofs under guardedness checking only.

References
[1] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. “CIĈ : Type-Based

Termination of Recursive Definitions in the Calculus of Inductive Construc-

tions”. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by
Miki Hermann and Andrei Voronkov. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2006, pp. 257–271. isbn: 978-3-540-48282-6.

[2] Jorge Luis Sacchini. “On type-based termination and dependent pattern match-

ing in the calculus of inductive constructions”. Theses. École Nationale Supérieure

des Mines de Paris, June 2011. url: https://pastel.archives-ouvertes.fr/pastel-
00622429.

1https://github.com/ionathanch/coq/tree/dev

1

https://pastel.archives-ouvertes.fr/pastel-00622429
https://pastel.archives-ouvertes.fr/pastel-00622429
https://github.com/ionathanch/coq/tree/dev

