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Abstract7

In dependent type theory, being able to refer to a type universe as a term itself increases its8

expressive power, but requires mechanisms in place to prevent Girard’s paradox from introducing9

logical inconsistency in the presence of type-in-type. The simplest mechanism is a hierarchy of10

universes indexed by a sequence of levels, typically the naturals. To improve reusability of definitions,11

they can be made level polymorphic, abstracting over level variables and adding a notion of level12

expressions. For even more expressive power, level expressions can be made first-class as terms13

themselves, and level polymorphism is subsumed by dependent functions quantifying over levels.14

Furthermore, bounded level polymorphism provides more expressivity by being able to explicitly15

state constraints on level variables. While semantics for first-class levels with constraints are known,16

syntax and typing rules have not been explicitly written down. Yet pinning down a well-behaved17

syntax is not trivial; there exist prior type theories with bounded level polymorphism that fail to18

satisfy subject reduction. In this work, we design an explicit syntax for a type theory with bounded19

first-class levels, parametrized over arbitrary well-founded sets of levels. We prove the metatheoretic20

properties of subject reduction, type safety, consistency, and canonicity, entirely mechanized from21

syntax to semantics in Lean.22
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1 Introduction27

Dependent type theories are common foundations for proof assistants, where theorems28

are manipulated as types and their proofs as terms. Types are often treated as terms29

themselves, providing a uniform mechanism for working with both; for example, quantifying30

over predicates is no different from quantifying over functions, as predicates are functions31

that return types. To merge types and terms, we need a type of types, or a universe, which32

itself must be a term with a type.33

Girard [10] showed that a type-in-type axiom makes dependent type theory logically34

inconsistent: if the type of a universe is itself, then all types are inhabited, rendering the type35

theory useless as a tool for proving. Therefore, Martin-Löf stratified the universe in his type36

theory (MLTT) [16] into a countably infinite hierarchy of universes U0 : U1 : U2 : . . . indexed37

by universe levels spanning the naturals. Many contemporary proof assistants based on38

dependent types feature such a hierarchy, such as Rocq [4], Agda [17], Lean [7], and F? [20].39

Having only a concrete universe hierarchy, however, limits the reusability of definitions40

that are not inherently tied to particular universe levels. For example, the identity function41

id : ΠA : Ui . A → A would need to be redefined for each universe level i at which it is needed.42

Universe level polymorphism addresses this issue by abstracting over level variables, used to43

index universes alongside concrete levels. Its simplest form is prenex level polymorphism,44

introduced by Harper and Pollack [11], which restricts the abstraction to top-level definitions.45

mailto:jcxz@seas.upenn.edu
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https://github.com/ionathanch/TTBFL
https://archive.softwareheritage.org/swh:1:dir:8f18b01234056282a037b3d835e97df2b5050b29


2 Bounded First-Class Universe Levels

Courant [5] extends their implicit system to an explicit system with (in)equality constraints,46

level operators, and level expressions. This extension is implemented in Rocq [19].47

If we disallow recursive definitions that vary in the level, uses of prenex-polymorphic48

definitions can be specialized to level-monomorphic terms. Favonia, Angiuli, and Mullanix49

note that it “is as consistent as standard (monomorphic) type theory […] because any given50

proof can only mention finitely many universes”, and show consistency using this idea [12].51

If level quantification is added as a type former directly to the type theory, we obtain52

higher-rank level polymorphism, where level-polymorphic terms can be passed as arguments53

to functions. For instance, Bezem, Coquand, Dybjer, and Escardó introduce such a type54

theory (referred to here as BCDE) with level constraints [3]. Going further, rather than55

keeping universe levels distinct from terms, we can make them first class by defining level56

expressions as a subset of terms, and add a type of levels; such levels are found in Agda.57

Level quantification is subsumed by dependent functions whose domain is this level type.58

The codomain can also be the level type, which describes functions that compute levels.59

First-class universe levels are known to be logically consistent. In particular, Kovács [14]60

gives a semantic model for a type theory TTFL, which features first-class levels and an61

ordering relation < on them. The model is given as categories with families (cwfs) [8],62

mostly mechanized in Agda using induction–recursion, and supports features such as level63

constraints, maxima of levels, and induction on levels.64

The syntax of TTFL is considered to be the initial model in the category of cwfs, but65

an explicit syntax and typing rules are not given, and proving initiality even for MLTT is66

a colossal task [6]. Furthermore, while a syntax may satisfy semantic properties such as67

logical consistency, it may not necessarily satisfy desirable syntactic properties. In particular,68

BCDE’s semantics can conceivably be viewed as that of TTFL without making levels first69

class, yet its syntax fails to satisfy subject reduction.70

In this work, we give an end-to-end account of first-class levels in type theory, beginning71

with an explicit syntax and typing rules, and proving that they satisfy desirable metatheoretic72

properties. Our contributions are as follows:73

We present TTBFL, a dependent type theory with bounded, first-class universe levels.74

Our bounds differ from level constraints in that they are inherent to the type of a level,75

rather than a separate predicate on them, which prevents failure of subject reduction.76

Examples in the next section build up from monomorphic levels to level polymorphism77

before we proceed to the formal definition of the type theory in Section 3.78

We prove subject reduction (i.e. preservation) in Section 4, an improvement upon the79

metatheoretic properties of BCDE. We also prove progress and thus type safety, which is80

important if we also want to use the language for writing programs that evaluate. An81

example is implementing proof assistants in themselves, as is (partially) done in Lean82

and undergoing work for Rocq [18].83

Using a syntactic logical relation, we prove logical consistency and canonicity via the84

fundamental soundness theorem in Section 5. Consistency ensures that the type theory is85

suitable as a basis for logical reasoning in a proof assistant, while canonicity ensures that86

closed terms evaluate to the values we expect. Normalization of open terms remains an87

open problem (Section 6).88

All results are mechanized in Lean. The development consists of under 1700 lines of code,89

which can be found in the supplementary materials at https://github.com/ionathanch/TTBFL.90

The definitions and theorems in this paper are hyperlinked to the corresponding Lean files.91

As our system is intentionally very minimal, we discuss some further extensions in Section 7,92

including level operators and subtyping. We conclude with future work in Section 8.93

https://github.com/ionathanch/TTBFL
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2 Motivation94

To motivate the range of features in TTBFL, we look at examples starting from monomorphic95

universe levels and build up to first-class levels and bounding in this section. Although not96

found in our minimal language, these examples use dependent pairs, propositional equality,97

the naturals, and lists for more illuminating examples.98

Let us start by revisiting the identity function and its type, supposing U0 : U1 : . . . Uω,99

with a limit universe ω at the top, which will come in handy later.100

Id : U1 id : Id101

Id := ΠA : U0. A → A id := λA : U0. λx : A. x102

This identity function is polymorphic over types in U0, but not over universes, so the self103

application id Id id is ill typed. More generally, if we want to reuse a definition at different104

universe levels, it would need to be redefined for every level needed. If we introduce prenex105

polymorphism of universe levels, where top-level definitions are permitted to be polymorphic,106

we can write a universe polymorphic identity function that can be instantiated at different107

levels and self-applied.108

Id : ∀i. Ui+1 id : ∀i. Id [i]109

Id := Λi. ΠA : Ui . A → A id := Λi. λA : Ui . λx : A. x110

Now, the expression id [1] (Id [0]) (id [0]) is well typed. A definition can also be polymorphic111

over multiple levels, such as the constant function that takes two arguments but always112

returns the first. For this, we need a binary least upper bound operator t on levels.113

Const : ∀i. ∀j. U(itj)+1 const : ∀i. ∀j. Const [i] [j]114

Const := Λi. Λj. ΠA : Ui . ΠB : Uj . A → B → A const := Λi. Λj. λA. λB. λx. λy. x115

The universe in which Const [i] [j] lives is (i t j) + 1, because its universe must contain116

the universes Ui and Uj over which it quantifies. As more level variables get involved, the117

algebraic expressions on levels becomes increasingly complex. But the precise universe in118

which Const lives is not as important as knowing that it lives in some greater universe,119

which is all that is needed to prevent type-in-type inconsistencies. This can be expressed by120

bounded level quantification, simplifying level expressions at the cost of an additional level121

variable. We use the limit level ω to allow k to range over all other levels.122

Const : ∀k < ω. ∀i < k. ∀j < k. Uk123

Const := Λk. Λi. Λj. ΠA : Ui . ΠB : Uj . A → B → A124

While nonrecursive prenex level polymorphism can be monomorphized away, this is not125

the case once we introduce recursive definitions whose recursive calls may vary in the level.126

This lets us define universes with levels incremented by fixed amount, i.e. Uk+n.127

incr : ∀k < ω. Nat → Uω128

incr k zero := Uk129

incr k (succ n) := incr n [k + 1]130

Generalizing from prenex level polymorphism to higher-rank level polymorphism affords131

even more reusability. One application is when axioms are explicitly assumed as local132

hypotheses instead of globally axiomatized to restrict their usage to only where they are133

really needed. An example is function extensionality, whose type is level polymorphic.134

FunExt : ∀k < ω. ∀i < k. ∀j < k. Uk135

FunExt := Λk. Λi. Λj. ΠA : Ui . ΠB : (A → Uj).136

Πf : (Πx : A. B x). Πg : (Πx : A. B x). (Πx : A. f x = g x) → f = g137

Suppose we wished to prove that function extensionality for functions with two arguments138
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at different universe levels follows from assuming FunExt. Using only prenex polymorphism,139

we would need two separate instantiations, once for its application to the functions of type140

Πx : A. B x → C x, and once for its application to the functions of type B x → C x.141

lemma : ∀l < ω. ∀i < l. ∀j < l. ∀k < l. (FunExt [l] [i] [j t k]) → (Funext [l] [j] [k]) →142

ΠA : Ui . ΠB : (A → Uj). ΠC : (A → Uk).143

Πf : (Πx : A. B x → C x). Πg : (Πx : A. B x → C x).144

(Πx : A. Πy : B x. f x y = g x y) → f = g145

lemma := Λl. Λi. Λj. Λk. λfe1. λfe2. . . .146

Once more universe levels get involved, instantiating up front every possible use becomes147

unwieldy. With higher-rank polymorphism, we can quantify over a polymorphic function148

extensionality principle once and for all, and instantiate its levels within the proof as needed.149

lemma : (∀k < ω. ∀i < k. ∀j < k. FunExt [i] [j] [k]) →150

∀l < ω. ∀i < l. ∀j < l. ∀k < l. ΠA : Ui . ΠB : (A → Uj). ΠC : (A → Uk).151

Πf : (Πx : A. B x → C x). Πg : (Πx : A. B x → C x).152

(Πx : A. Πy : B x. f x y = g x y) → f = g153

lemma := λfe. Λl. Λi. Λj. Λk. . . .154

With higher-rank level polymorphism, a level-polymorphic type itself must live in some155

universe, which is often that of the bounding level. Coming back to the identity function,156

we can impose a bound on its level by bounded quantification, and use the bound for the157

universe. Self-applications such as id [2] [1] (Id [1]) (id [1]) still hold.158

Id : ∀j < ω. Uj id : ∀j < ω. Id [j]159

Id := Λj. ∀i < j. ΠA : Ui . A → A id := Λj. Λi. λA : Ui . λx : A. x160

So far, our notions of level polymorphism treat levels as syntactically separate from terms,161

with special level operators · + 1 and · t ·. Consequently, if we want more general ways to162

compute level expressions, we must add them as primitives to the language. If we instead163

make levels first class, we are then able to manipulate and store them as terms. Bounded level164

quantifications are subsumed by ordinary dependent types whose domain is the type of all165

levels bounded by some strictly greater level Level< k. An example application is computing166

the least upper bound level from a list of levels and types of that level.167

lub : List (Σi : Level< ω. U i) → Level< ω168

lub nil := 0169

lub (cons (i, A) As) := i t (lub As)170

This level computation can be used to turn a list of types and their levels into an n-ary171

tuple with a precise level. This is a technique used, for instance, by Escot and Cockx in172

generic programming to represent level-polymorphic inductive types [9].173

Interp : ΠAs : List (Σi : Level< ω. U i). U (lub As)174

Interp nil := >175

Interp (cons (i, A) As) := A × (Interp As)176

Various proof assistants with universe level polymorphism implement different subsets177

of these features. Lean and F? have prenex polymorphism with successor and least upper178

bound operators. Rocq has prenex polymorphism along with level (in)equality declarations,179

but no other operators. Agda has first-class levels and the two level operator, but no level180

constraints. In TTBFL, we include bounded first-class levels, but omit the two level operators181

for simplicity, opting to treat them as straightforward potential extensions.182
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i, j ::= <concrete universe levels>

x, y, z ::= <term variables>

a, b, c, A, B, C, k, ` ::= x | i | Πx : A. B | λx : A. b | b a | ⊥ | absurdA b | U k | Level< `

Γ, ∆ ::= · | Γ, x : A

Figure 1 Syntax 〈syntactics.lean:Term,Ctxt〉

Nil

` ·

Cons
` Γ Γ ` A : U k

` Γ, x : A

Var
` Γ x : A ∈ Γ

Γ ` x : A

Pi
Γ ` A : U k Γ, x : A ` B : U k

Γ ` Πx : A. B : U k

Lam
Γ ` A : U k Γ ` Πx : A. B : U k Γ, x : A ` b : B

Γ ` λx : A. b : Πx : A. B

App
Γ ` b : Πx : A. B Γ ` a : A

Γ ` b a : B[x 7→ a]

Mty
Γ ` U k : U `

Γ ` ⊥ : U k

Abs
Γ ` A : U k Γ ` b : ⊥

Γ ` absurdA b : A

Conv
Γ ` a : A Γ ` B : U k A ≡ B

Γ ` a : B

E-Beta

(λx : A. b) a ≡ b[x 7→ a]

E-Refl

a ≡ a

E-Sym
a ≡ b
b ≡ a

E-Trans
a ≡ b b ≡ c

a ≡ c
· · ·

Figure 2 Typing and selected equality rules (no universes or levels) 〈typing.lean:Wtf,Eqv〉

3 A minimal type theory with bounded first-class universe levels183

TTBFL is a Church-style type theory à la Russell, where terms may have type annotations,184

and there is no separate typing judgement for well-formedness of types. To keep the type185

theory minimal, it contains only dependent functions, an empty type, predicative universes,186

and bounded universe levels. By convention, we use a, b, c for terms, A, B, C for types, and187

k, ` for level terms. The syntax is presented in Figure 1; we additionally use A → B as sugar188

for nondependent functions Πx : A. B where x does not occur in B. While the mechanization189

uses de Bruijn indexing and simultaneous substitutions, this paper presents the syntax in190

nominal form for clarity, and we omit the details of manipulating substitutions for concision.191

We write single substitutions of a variable x in a term b by another term a as b[x 7→ a].192

The type theory is parametrized over a cofinal woset of levels, i.e. a set of levels that are193

well founded, totally ordered, and each have some strictly larger level; these properties are194

required when modelling the type theory. Instances of such sets include the naturals 0, 1, 2, . . . ,195

as well as the naturals extended by one limit ordinal ω and its successors ω +1, ω +2, . . . . We196

continue to use these concrete levels for our examples. These metalevel levels are internalized197

directly in system as terms i.198

We begin first with the basic rules that don’t concern universes or levels in Figure 2,199

consisting of a context well-formedness judgement ` Γ , a typing judgement Γ ` a : A , and200

an untyped definitional equality a ≡ b . We use β-conversion as our equality, and omit201

the usual congruence rules. Unusually, rule Lam includes well-typedness premises of both202

the function’s type and the domain type alone. The former is necessary to strengthen the203

induction hypotheses when proving the fundamental soundness theorem, and the latter to204

strengthen them when proving subject reduction. We later prove admissible a rule Lam’205

https://github.com/ionathanch/TTBFL/tree/main/src/syntactics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/typing.lean
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Γ ` k : Level< `

Γ ` U k : U `
Univ

Γ ` U k1 : U `1 Γ ` k0 : Level< `0

Γ ` Level< k0 : U k1
Level<

` Γ i < j
Γ ` i : Level< j

Lvl

Γ ` k1 : Level< k2 Γ ` k2 : Level< k3

Γ ` k1 : Level< k3
Trans

Γ ` A : U k Γ ` k : Level< `

Γ ` A : U `
Cumul

Figure 3 Typing rules (universes and levels)

that omits the first premise. The other typing rules are otherwise typical.206

The rules relating to universes and levels are given in Figure 3. By rule Lvl, we207

can view the type constructor Level< as a restricted internalization of the order on levels.208

Quantifications and abstractions over a level variable must be bounded by some level209

expression, which cannot be the variable itself since it is not in the scope of its own type.210

In contrast, if we had more general level constraint types, it would be possible to declare a211

looping constraint x < x . The level type itself can be typed at any universe by rule Level<212

regardless of its bounding level. For example, we can construct a derivation for · ` Level<2 : U0213

solely knowing that · ` 2 : Level< 3, · ` U 0 : U 1, which follow from 0 < 1 and 2 < 3.214

Rule Trans internalizes transitivity of the order on levels, which is now required since215

levels are terms in general and not only concrete levels. For example, we can construct216

a derivation for x : Level< ω, y : Level< x ` x : Level< ω, where the levels x, y are variables.217

Rule Cumul is a cumulativity rule that permits lifting a type from one universe to a higher218

universe. This rule is weaker than a full subtyping rule that accounts for contravariance219

in the domain and covariance in the codomain of function types. Therefore, for instance,220

f : U 2 → U 0 ` f : U 1 → U 1 does not hold. Nonetheless, cumulativity allows us to instead221

type the η-expansion f : U 2 → U 0 ` λx : U 1. f x : U 1 → U 1.222

Finally, rule Univ asserts that a universe at level k lives in the universe at level ` when k223

is strictly bounded by `. Allowing universes with general level terms and not just concrete224

levels to be well typed is what permits typing level-polymorphic types. For example, the225

level-polymorphic identity function type Πx :Level<ω. Πy :Ux. y → y is typeable. Level<ω can226

be assigned an arbitrary type by rule Level, U x has type U ω by rule Univ and rule Var,227

and y can be assigned type U ω transitively via rules Trans and Var. Then the entire term228

has type U ω by repeated application of rule Pi.229

4 Type safety230

Type safety is proven using standard syntactic methods to show progress and preservation231

(i.e. subject reduction). In essence, closed, well-typed terms evaluate (if they terminate) to232

values, which are type formers and constructors, defined below. The proof is standard, so we233

omit most details, listing only some of the key lemmas required.234

v ::= i | Πx : A. B | λx : A. b | ⊥ | U k | Level< ` 〈safety.lean:Value〉235

4.1 Reduction and conversion236

Rather than working directly with β-reduction, we use parallel reduction a ⇒ b , defined in237

Figure 4, and its reflexive, transitive closure a ⇒∗ b , into which call-by-name evaluation238

embeds. Similarly, instead of definitional equality, we use conversion a ⇔ b , which is defined239

in terms of parallel reduction. We begin with simple lemmas about parallel reduction.240

https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
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P-Beta
b ⇒ b′ a ⇒ a′

(λx : A. b) a ⇒ b′[x 7→ a′]

P-Pi
A ⇒ A′ B ⇒ B′

Πx : A. B ⇒ Πx : A′. B′

P-Lam
A ⇒ A′ b ⇒ b′

λx : A. b ⇒ λx : A′. b′

P-Univ
k ⇒ k ′

U k ⇒ U k ′

P-App
b ⇒ b′ a ⇒ a′

b a ⇒ b′ a′

P-Abs
A ⇒ A′ b ⇒ b′

absurdA b ⇒ absurdA′ b′

P-Level<
` ⇒ `′

Level< ` ⇒ Level< `′

P-Var

x ⇒ x

P-Lvl

i ⇒ i

P-Mty

⊥ ⇒ ⊥

Figure 4 Parallel reduction rules 〈reduction.lean:Par,Pars〉

I Definition 1 (Conversion). 〈reduction.lean:Conv〉241

a ⇔ b iff there exists a c such that a ⇒∗ c and b ⇒∗ c242

I Lemma 2 (Substitution (p.r.)). 〈reduction.lean:parsSubst〉243

If a ⇒∗ a′ and b ⇒∗ b′, then b[x 7→ a] ⇒∗ b′[x 7→ a′].244

I Lemma 3 (Construction (p.r.)). 〈reduction.lean:pars{β,Pi,Abs,U,App,Exf,Lvl}〉245

Analogous constructors of parallel reduction hold for its reflexive, transitive closure, e.g. if246

b ⇒∗ b′ and a ⇒∗ a′, then (λx : A. b) a ⇒∗ b′[x 7→ a′].247

I Lemma 4 (Inversion (p.r.)). 〈reduction.lean:pars{Pi,Abs,U,App,Exf,Lvl,Lof,Mty}Inv〉248

If v ⇒∗ c, then c is also a value of the same syntactic shape such that the reduction is249

congruent, e.g. if λx : A. b ⇒∗ c, then c is syntactically equal to λx : A′. b′ for some A′, b′
250

such that A ⇒∗ A′, b ⇒∗ b′.251

Proving that conversion is transitive requires proving confluence for parallel reduction.252

We use the notion of complete development aT by Takahashi [21], which joins parallel253

reduction and proves the diamond property. Its definition is omitted here, but corresponds254

to simultaneous reduction of all redexes.255

I Lemma 5 (Completion (p.r.)). 〈reduction.lean:parTaka〉 If a ⇒ b, then b ⇒ aT.256

I Corollary 6 (Diamond (p.r.)). 〈reduction.lean:diamond〉 If a ⇒ b and a ⇒ c, then there257

exists some d such that b ⇒ d and c ⇒ d. In particular, d is aT, with the reductions given258

by Completion (p.r.).259

I Theorem 7 (Confluence (p.r.)). 〈reduction.lean:confluence〉260

If a ⇒∗ b and a ⇒∗ c, then there exists some d such that b ⇒∗ d and c ⇒∗ d.261

I Corollary 8 (Properties of conversion). 〈reduction.lean:conv*〉 Conversion is reflexive,262

symmetric, transitive, substitutive, and congruent. Transitivity requires Confluence (p.r.);263

the remaining are straightforward from the corresponding properties of parallel reduction.264

Inversion on parallel reduction gives syntactic consistency and injectivity of conver-265

sion. Finally, definitional equality is equivalent to conversion, which allows us to use them266

interchangeably later on.267

I Lemma 9 (Syntactic consistency). 〈reduction.lean:conv{U,Pi,Mty,Lvl}{U,Pi,Mty,Lvl}〉268

If v1 and v2 have different syntactic shapes, then v1 ⇔ v2 is impossible.269

I Lemma 10 (Injectivity (conv.)). 〈reduction.lean:conv{Pi,U,Lvl}Inv〉270

1. If Πx : A1. B1 ⇔ Πx : A2. B2, then A1 ⇔ A2 and B1 ⇔ B2.271

2. If U k1 ⇔ U k2, then k1 ⇔ k2.272

3. If Level< k1 ⇔ Level< k2, then k1 ⇔ k2.273

I Theorem 11. 〈typing.lean:convEqv,eqvConv〉 a ≡ b iff a ⇔ b.274

https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/reduction.lean
https://github.com/ionathanch/TTBFL/tree/main/src/typing.lean
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4.2 Subject reduction and type safety275

To prove subject reduction, we need the usual weakening, substitution, replacement, and276

regularity lemmas. They follow from stronger forms of these lemmas involving simultaneous277

renaming and substitution, whose details we omit.278

I Lemma 12. 〈safety.lean:wtWeaken,wtSubst,wtReplace,wtRegularity〉279

Weakening. If ` Γ, Γ ` B : U k, and Γ ` a : A, then Γ, x : B ` a : A, where x not in a, A.280

Substitution. If Γ ` b : B and Γ, x : B ` a : A, then Γ ` a[x 7→ b] : A[x 7→ b].281

Replacement. If A ≡ B, Γ ` B : U k, and Γ, x : A ` c : C , then Γ, x : B ` c : C .282

Regularity. If Γ ` a : A, then there exists some k such that Γ ` A : U k.283

I Theorem 13 (Subject reduction). 〈safety.lean:wtPar〉284

If a ⇒ b and Γ ` a : A, then Γ ` b : A.285

Proof. By induction on the typing derivation of a. The most complex case is when the286

reduction is P-Beta, requiring Corollary 8 and Lemma 12. Even so, the proof is standard, and287

the cases for the universe and level rules in Figure 3 follow from the induction hypotheses. J288

At this point, we are able to prove admissibility of rule Lam without its first premise,289

which depends only on regularity.290

I Corollary 14 (Lam’). 〈safety.lean:wtfAbs〉291

Given Γ ` Πx : A. B : U k and Γ, x : A ` b : B, we have Γ ` λx : A. b : Πx : A. B.292

For progress and type safety, our notion of evaluation is the reflexive, transitive closure293

a  ∗ b of call-by-name (cbn) reduction a  b , which reduces β-redexes and head positions.294

A single step of cbn reduction embeds into a single step of parallel reduction by induction,295

which allows us to use Subject reduction. These proofs are also standard.296

I Lemma 15 (Progress). 〈safety.lean:wtProgress〉297

If · ` a : A, then either a is a value, or a  b for some b.298

I Theorem 16 (Type safety). 〈safety.lean:wtSafety〉299

If · ` a : A and a  ∗ b, then either b is a value, or b  c for some c.300

5 Consistency and canonicity301

To prove consistency and canonicity, we use a logical relation to semantically interpret closed302

types as sets of closed terms; these sets are backward closed under reduction, so if a term303

reduces to something in the set, then it is also in the set. The empty type is interpreted304

as the empty set, universes as sets of terms that reduce to types, and level types as sets305

of terms that reduce to concrete levels. Consistency and canonicity then follow from the306

fundamental soundness theorem, which states that if a term a has type A, then a is in the307

interpretation of A. For instance, there is no closed term of the empty type, since it must308

belong to its interpretation as an empty set, which is a contradiction. The structure of the309

logical relation and the soundness proof is adapted from the mechanization by Liu [15]. We310

cover some details here, especially as they pertain to universes and levels.311

https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
https://github.com/ionathanch/TTBFL/tree/main/src/safety.lean
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I-Mty

J⊥Ki ↘ ∅

I-Univ
j < i

JU jKi ↘ {z | ∃P. JzKj ↘ P}

I-Level<

JLevel< j1Ki ↘ {z | ∃j2. z ⇒∗ j2 ∧ j2 < j1}

I-Step
A ⇒ B JBKi ↘ P

JAKi ↘ P

I-Pi
JAKi ↘ P1 ∀y. y ∈ P1 → ∃P2. R(y, P2)

∀y. ∀P2. R(y, P2) → JB[x 7→ y]Ki ↘ P2

JΠx : A. BKi ↘ {f | ∀y. ∀P2. R(y, P2) → y ∈ P1 → f y ∈ P2}

Figure 5 Logical relation for closed types 〈semantics.lean:Interps〉

5.1 Logical relation for closed types312

The logical relation is written as JAKi ↘ P , where A is the type, P is the set of terms, and313

i is the universe level of the type. A set of terms P is mechanized as a predicate on terms,314

though we to write a ∈ P in lieu of P(a) to say that a is in the set, and we use set-builder315

notation in lieu of explicit abstractions. When proving properties of the logical relation,316

we require no other axioms than predicate extensionality, which follows from function and317

propositional extensionality; we explicitly mark the lemmas in which they are used with †.318

Because universes are interpreted as sets of types which themselves have interpretations319

at a lower universe level, to ensure that the interpretation is well defined, the mechanization320

implements it as an inductive definition parametrized by interpretations at lower levels, then321

ties the knot by well-founded induction on levels. For clarity and concision, we ignore these322

details and present the logical relation in Figure 5 without worrying about well-foundedness.323

Let us get the easier cases out of the way. The interpretation of the empty type as324

the empty set is given by rule I-Mty. Rule I-Step backward closes the interpretation325

under reduction of the type, so a type has an interpretation if it reduces to a type with an326

interpretation. We show shortly that forward closure under reduction of the type also holds,327

as well as backward closure under reduction of the terms in the interpretations.1328

Because we consider the interpretation of closed types only, and we have a constructor for329

backward closure, the only other constructors we need are those for normal, closed types. In330

particular, we need only consider U j and Level< j1 with concrete levels rather than arbitrary331

level terms. The interpretation of Level< j1 given by rule I-Level< is the set of level terms332

strictly less than j1; more precisely, it is the set of terms that reduce to such concrete levels.333

The interpretation of U j given by rule I-Univ is the set of types that have an interpretation.334

The intuition behind rule I-Pi for function types is that a function f is in its interpretation
if for every argument y in the interpretation of the domain, the application f y is in
the interpretation of the codomain. Because we are dealing with dependent types, the
interpretation of the codomain varies with the argument, so we need to ensure first that
the interpretation exists for every argument in the interpretation of the domain, and that
f y is in the particular interpretation of the codomain. It then sounds like we would want
rule I-Pi’ below 〈semantics.lean:interpsPi〉.

JAKi ↘ P1 ∀y. y ∈ P1 → ∃P2. JB[x 7→ y]Ki ↘ P2

JΠx : A. BKi ↘ {f | ∀y. ∀P2. (JB[x 7→ y]Ki ↘ P2) → y ∈ P1 → f y ∈ P2}
I-Pi’

The problem is that the interpretation is not strictly positive in the conclusion, so I-Pi’335

as a constructor is not well defined. Rule I-Pi therefore uses an auxiliary relation R that336

1 We do not require forward closure.

https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
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relates the argument y to the interpretation of the codomain B[x 7→ y]. Rule I-Pi’ then337

holds by instantiating R(y, P2) with JB[x 7→ y]Ki ↘ P2 in rule I-Pi. This is the same trick338

used by Liu [15], whose origins are documented by Anand and Rahli [2].339

We require of the logical relation inversion properties for each constructor, along with340

properties that hold a priori for syntactic typing: conversion and cumulativity. A key341

intermediate lemma is functionality, i.e. that the interpretation of a type is deterministic.342

Cumulativity holds directly by induction on the logical relation. To prove conversion, we343

begin with closures over reductions.344

I Lemma 17 (Cumulativity (l.r.)). 〈semantics.lean:interpsCumul〉345

Suppose i < j. If JAKi ↘ P, then JAKj ↘ P.346

I Lemma 18 (Forward and backward closure (l.r.)). 〈semantics.lean:interps{Fwds,Bwds}〉347

1. If JAKi ↘ P and either A ⇒ B or A ⇒∗ B, then JBKi ↘ P.348

2. If JBKi ↘ P and either A ⇒ B or A ⇒∗ B, then JAKi ↘ P.349

Proof.350

1. For A ⇒ B, by induction on the logical relation, using Diamond (p.r.) in the I-Step351

case. Substitution (p.r.) is needed in the I-Pi case to manipulate the substitution in the352

function codomain. For A ⇒∗ B, by induction on this reduction.353

2. For A ⇒ B, directly by rule I-Step. For A ⇒∗ B, by induction on this reduction. J354

I Corollary 19 (Conversion (l.r.)). 〈semantics.lean:interpsConv〉355

If JAKi ↘ P and A ⇔ B, then JBKi ↘ P, using forward and backward closure.356

The final closure lemma we need is backward closure of the terms in the interpretations.357

When proving the fundamental theorem, we encounter situations where our goal requires358

inclusion of a reduced term in an interpretation, while induction hypotheses only piece359

together inclusion of the term before reduction.360

I Lemma 20 (Backward closure). 〈semantics.lean:interpsBwdsP〉361

If JAKi ↘ P and a ⇒∗ b, then b ∈ P implies a ∈ P.362

Proof. By induction on the logical relation. In the I-Univ case, where a and b are types, we363

use backward closure from Lemma 18. J364

The inversion principles for each constructor of the logical relation hold by induction,365

using properties of parallel reduction as needed. However, it is the inversion principle for366

rule I-Pi’ that we want. The issue lies in the set of terms of the interpretation: if we do not367

yet know that the sets are unique, then inversion on rule I-Pi gives some interpretation P2368

of the codomain, but we do not know whether it is the interpretation that is required. We369

solve this by proving functionality.370

I Lemma 21 (Fixed-level functionality (l.r.)). † 〈semantics.lean:interpsDet'〉371

If JAKi ↘ P and JAKi ↘ Q, then P = Q.372

Proof. By induction on the first logical relation, then generally inversion on the second,373

except for the I-Step case, which holds directly by the induction hypothesis and forward374

closure on the second logical relation. The complex case is I-Pi, where we must prove the375

two sets of terms equal, knowing by the induction hypotheses that the interpretations of the376

domain and codomain yield equal sets. Because sets are encoded as predicates, we need to377

use predicate extensionality. It then suffices to show that membership in one set implies378

membership in the other, which holds using the induction hypotheses. J379

https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
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Functionality holds even with different universe levels, the idea being that the interpreta-380

tion of a type is independent of the level at which it lives. We are then finally able to prove381

the inversion property for rule I-Pi’.382

I Lemma 22 (Functionality (l.r.)). 〈semantics.lean:interpsDet〉383

If JAKi ↘ P and JAKj ↘ Q, then P = Q.384

Proof. By totality of the order on levels, either i and j are equal, or one is strictly larger385

than the other. In the latter case, we use Cumulativity (l.r.) to lift the logical relation at the386

lower level to the higher level. Then the sets are equal by Fixed-level functionality (l.r.). J387

I Lemma 23 (Inversion on function types (l.r.)). † 〈semantics.lean:interpsPiInv〉388

If JΠx : A. BKi ↘ P, then there exists a P1 such that:389

1. JAKi ↘ P1;390

2. ∀y. y ∈ P1 → ∃P2. JB[x 7→ y]Ki ↘ P2; and391

3. P = {f | ∀y. ∀P2. (JB[x 7→ y]Ki ↘ P2) → y ∈ P1 → f y ∈ P2}.392

Proof. By inversion on the logical relation, which gives P1 and R such that:393

4. JAKi ↘ P1;394

5. ∀y. y ∈ P1 → ∃P2. R(y, P2);395

6. ∀y. ∀P2. R(y, P2) → JB[x 7→ y]Ki ↘ P2; and396

7. P = {f | ∀y. ∀P2. R(y, P2) → y ∈ P1 → f y ∈ P2}.397

1 holds directly by 4, and 2 holds by combining 5 and 6. To show that the sets in 3 and 7398

are equal, we again use predicate extensionality.399

3 implies 7. Supposing y and P2, we have three hypotheses (JB[x 7→ y]Ki ↘ P2) →400

y ∈ P1 → f y ∈ P2, R(y, P2), and y ∈ P1. From 6 on the second hypothesis, we have401

JB[x 7→ y]Ki ↘ P2, so we can apply the first hypothesis to get f y ∈ P2.402

7 implies 3. Supposing y and P2, we have three hypotheses R(y, P2) → y ∈ P1 → f y ∈ P2,403

JB[x 7→ y]Ki ↘ P2, and y ∈ P1. By the first hypothesis on the second and on 5, there404

exists a P ′
2 such that f y ∈ P ′

2. From 6, we also have JB[x 7→ y]Ki ↘ P ′
2. Then by405

Functionality (l.r.), we have P2 = P ′
2, so f y ∈ P2. J406

Inversion principles also hold for the other types by induction on the logical relation.407

I Lemma 24 (Inversion on universes (l.r.)). 〈semantics.lean:interpsUInv〉408

If JU kKi ↘ P and A ∈ P, then there exists j, Q such that k ⇒∗ j and JAKj ↘ Q.409

I Lemma 25 (Inversion on level types (l.r.)). 〈semantics.lean:interpLvlInv〉410

If JLevel< `Ki ↘ P and k ∈ P, then there exist j2 < j1 such that ` ⇒∗ j1 and k ⇒∗ j2.411

I Lemma 26 (Inversion (l.r.)). 〈semantics.lean:interpsStepInv〉412

If JC Ki ↘ P, then one of the following holds: C ⇒∗ ⊥; or413

There exist A and B such that C ⇒∗ Πx : A. B; or414

There exists i such that C ⇒∗ U i or C ⇒∗ Level< i.415

5.2 Fundamental soundness theorem416

Although the logical relation relates closed types to sets of closed terms, the fundamental417

theorem is proven over syntactic typing of open terms, so we need a notion of semantic418

typing that handles closing over the terms in a given typing context with a simultaneous419

substitution. Semantic typing is then elementhood of a term in the interpretation of its type420

for any substitution that closes them both.421

https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
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σ � ·
·· · ·· · ·· I-Nil

σ � Γ JA[σ]Ki ↘ P a ∈ P

σ, x 7→ a � Γ, x : A
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· I-Cons

Figure 6 Semantically well-typed substitutions 〈semantics.lean:semSubst{Nil,Cons}〉

At this point, referring to simultaneous substitutions is inevitable. We denote them as σ,422

and write σ, x 7→ a for its extension by a single substitution of x by a. In the mechanization,423

semantic well-typedness of a substitution σ � Γ is defined similarly to semantic typing424

Γ ` a : A , but the admissible rules defined in Figure 6 are more convenient.425

I Definition 27. 〈semantics.lean:semSubst〉 A substitution σ is semantically well typed wrt426

context Γ iff for every x : A ∈ Γ, there exist i, P such that JA[σ]Ki ↘ P and x[σ] ∈ P.427

I Definition 28 (Semantic typing). 〈semantics.lean:semWt〉 A term a is semantically well428

typed with type A under context Γ, written Γ � a : A, iff for every σ such that σ � Γ, there429

exist i, P such that JA[σ]Ki ↘ P and a[σ] ∈ P.430

The fundamental soundness theorem states that syntactic typing implies semantic typing.431

The cases corresponding to the rules in Figure 2 are routine by construction and inversion432

of rules I-Pi and I-Mty [15], so we do not cover them all here. Instead, we detail only the433

I-Lam case to highlight where some of the above lemmas are used, followed by the cases for434

the rules in Figure 3 that are unique to our system. For concision, we skip steps involving435

massaging substitutions into the right shape.436

I Theorem 29 (Soundness). 〈soundness.lean:soundness〉 If Γ ` a : A, then Γ � a : A.437

Proof. By induction on the typing derivation. In each case, we suppose that σ � Γ.438

Rule Lam. The relevant premises are Γ ` Πx : A. B : U k and Γ, x : A ` b : B, concluding439

with Γ ` λx : A. b : Πx : A. B. By the induction hypothesis on the first premise, Lemma 24,440

and Lemma 23, we have JA[σ]Ki ↘ P1, JB[σ, x 7→ a]Ki ↘ P2, and a ∈ P1, where the goal441

is now to show that (λx : A. b) a ∈ P2. By rule I-Cons and the induction hypothesis on442

the second premise, we have JB[σ, x 7→ a]Ki′ ↘ P ′
2 and b[x 7→ a] ∈ P ′

2 for some i ′, P ′
2. By443

Functionality (l.r.), we have that P2 = P ′
2. Finally, by Backward closure on rule P-Beta444

and b[x 7→ a] ∈ P2, we obtain (λx : A. b) a ∈ P2.445

Rule Univ. The premise is Γ ` k : Level< `, concluding with Γ ` U k : U `. By the446

induction hypothesis and Lemma 25, we have i1 < i2 such that k[σ] ⇒∗ i1 and `[σ] ⇒∗ i2.447

By cofinality, there must exist a j such that i2 < j. The goal is now to show that448

JU (`[σ])Kj ↘ {z | ∃P. JzKi2
↘ P} and JU (k[σ])Ki2

↘ {z | ∃P. JzKi1
↘ P}. These are both449

constructed using rule I-Univ and Lemma 18.450

Rule Level<. The premises are Γ ` Uk1 : U`1 and Γ ` k0 : Level<`0, concluding with Γ `451

Level< k0 : U k1. By the induction hypothesis on the first premise and Lemma 24, U (k1[σ])452

has an interpretation as a universe, so it remains to find a P such that JLevel<(k0[σ])Kj ↘ P,453

where k1[σ] ⇒∗ j. By the induction on the second premise and Lemma 25, we have454

k0[σ] ⇒∗ i for some i. Then the goal is constructed using rule I-Level< and Lemma 18.455

Rule Lvl. Straightforward by construction using rule I-Level<.456

Rule Trans. The premises are Γ ` k1 : Level< k2 and Γ ` k2 : Level< k3, concluding with457

Γ ` k1 : Level< k3. By the induction hypotheses on the two premises and Lemma 25, we458

know that k1[σ] ⇒∗ i1, k2[σ] ⇒∗ i2, k2[σ] ⇒∗ i ′
2, and k3[σ] ⇒∗ i3 such that i1 < i2 and459

i ′
2 < i3. By Confluence (p.r.) and Syntactic consistency, it must be that i2 = i ′

2. From the460

https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/semantics.lean
https://github.com/ionathanch/TTBFL/tree/main/src/soundness.lean


J. Chan, S. Weirich 13

second inversion, we already know that Level< (k3[σ]) has an interpretation, so it remains461

to show that k1[σ] ⇒∗ i1 and k3[σ] ⇒∗ i3 such that i1 < i3, which holds by transitivity.462

Rule Cumul. The premises are Γ ` A : U k and Γ ` k : Level< `, concluding with463

Γ ` A : U `. By induction on the first premise and Lemma 24, we have some P such464

that JA[σ]Ki ↘ P and k[σ] ⇒∗ i. By induction on the second premise and Lemma 25,465

we have some i ′ < j such that k[σ] ⇒∗ i ′ and `[σ] ⇒∗ j. By Confluence (p.r.) and466

Syntactic consistency, it must be that i = i ′. By cofinality and Lemma 18, U (`[σ]) has467

an interpretation as a universe. It remains to show that JA[σ]Kj ↘ P, which holds by468

Cumulativity (l.r.) on i < j. J469

Consistency and canonicity results then follow from the fundamental theorem as corollaries.470

I Corollary 30 (Consistency). 〈soundness.lean:consistency〉 There is no b such that · ` b : ⊥471

holds. If there were, by Soundness, we get have · � b : ⊥. Instantiating with the identity472

substitution, then inverting on the interpretation of ⊥, we get b ∈ ∅, which is a contradiction.473

I Corollary 31 (Canonicity of types). 〈soundness.lean:canonU〉 If · ` C : U k, then either474

C ⇒∗ Πx : A. B, C ⇒∗ U i, C ⇒∗ Level< i, or C ⇒∗ ⊥. By Soundness, instantiating with475

the identity substitution, we have j, Q such that JU kKj ↘ Q and C ∈ Q. By inversion on the476

former, we have i, P such that k ⇒∗ i and JC Ki ↘ P. Then the goal holds by Inversion (l.r.).477

I Corollary 32 (Canonicity of levels). 〈soundness.lean:canonLvl〉 If · ` k : Level< `, then478

k ⇒∗ i for some concrete level i. By Soundness, instantiating with the identity substitution,479

we have j, P such that JLevel< `Kj ↘ P and k ∈ P. By inversion on the former, we have that480

` ⇒∗ i2 and k ⇒∗ i1 such that i1 < i2.481

6 Towards normalization482

One conventional way to prove normalization, given that we already have a syntactic logical483

relation, is to extend it from closed to open types and terms. However, we have not yet484

found the correct interpretation for open universe types that continues to satisfy the same485

properties we need (inversion, conversion, cumulativity, functionality) while being strong486

enough for the soundness proof to go through.487

It is also unclear whether the issue is finding the correct semantic model, or if normalization488

does not hold at all, because it depends on the syntactic presentation: if we remove type489

annotations from our type theory and present it Curry-style, is not normalizing. While490

directly declaring an ill-founded level x : Level< x is impossible, we can construct such a level491

in an inconsistent context using an unannotated absurd eliminator. Then it becomes possible492

to type the universe at this level as its own type. Figure 7 explicitly constructs the key part493

of the typing derivation for U (absurd x) : U (absurd x) where x : ⊥. With an instance of494

type-in-type, we can construct a nonnormalizing lambda term via e.g. Hurkens’ paradox [13].495

The ability to assign different types to the term absurd x is key to constructing this496

derivation. By requiring a type annotation that gets compared during definitional equality,497

we can only construct a derivation for U (absurd(Level< (absurd(Level< 0) x)) x) : U (absurd(Level< 0) x),498

which cannot be used as type-in-type. For similar reasons, we cannot use x : ΠA : U i. A to499

construct the ill-founded level, as the type arguments will be incomparable. In contrast, type500

annotations have no influence on consistency, as it remains provable via the logical relation501

on closed types even when annotations are removed.502

https://github.com/ionathanch/TTBFL/tree/main/src/soundness.lean
https://github.com/ionathanch/TTBFL/tree/main/src/soundness.lean
https://github.com/ionathanch/TTBFL/tree/main/src/soundness.lean
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Univ

Abs

Level<

Univ

Lvl
0 < 1

x : ⊥ ` 0 : Level< 1
x : ⊥ ` U 0 : U 1

. . .

x : ⊥ ` Level< 0 : U 0
x : ⊥ ∈ x : ⊥
x : ⊥ ` x : ⊥

Var

x : ⊥ ` absurd x : Level< 0
Abs

x : ⊥ ` Level< (absurd x) : U 0
x : ⊥ ∈ x : ⊥
x : ⊥ ` x : ⊥

Var

x : ⊥ ` absurd x : Level< (absurd x)
x : ⊥ ` U (absurd x) : U (absurd x)

Figure 7 Type-in-type in an inconsistent context

7 Extensions503

Our type theory is intentionally minimal to focus only on the core necessities of first-class504

levels and to keep the proof development small and uncluttered. Some reasonable extensions505

include the remaining missing types from MLTT, i.e. dependent pairs, sums, naturals,506

propositional equality, and W types, or general inductive types as in CIC [22]. However,507

these features and their difficulties are orthogonal from universes and levels. Here, we instead508

look at extensions that augment how universes and levels behave, some of which are validated509

by our current semantics, and others which present additional challenges.510

7.1 Level operators and eliminators511

The only features missing from TTBFL that Agda has are a zeroth level, a level successor512

operator, and a level maximum operator. To justify them semantically, we would impose the513

first two as additional existence conditions on the metalevel levels; the third follows from the514

total ordering, which lets us pick the larger of two levels.515

Zero
Γ ` k : Level< `

Γ ` 0 : Level< (↑ k)

Succ
Γ ` k : Level< `

Γ ` ↑ k : Level< (↑ `)

Max
Γ ` k1 : Level< `1 Γ ` k2 : Level< `2

Γ ` k1 t k2 : Level< (`1 t `2)

What complicates matters are the additional definitional equalities that ensure that the516

maximum operator is idempotent, associative, commutative, distributive with respect to517

successors, and that 0 is its identity element. While these properties hold automatically at the518

metalevel for concrete levels, they do not for arbitrary level expressions, e.g. 0 t ↑(x t ↑ x) ≡519

↑ ↑ x . Our notions of reduction then need to pick a direction for each equality to reduce levels520

to some chosen canonical form. We believe the mechanization to be doable but tedious.521

Meanwhile, well-founded induction on levels already holds semantically, as we need it to522

define our logical relation in the first place. We can internalize it by syntactically introducing523

an eliminator wf for levels, which states that a predicate B holds on arbitrary levels if we524

can show that it holds for a given level when we know it holds for all smaller levels. However,525

it is unclear whether such an eliminator would be useful.526

ElimLvl
Γ, z : Level< k ` B : U `

Γ ` b : Πx : Level< k. (Πy : Level< x. B[z 7→ y]) → B[z 7→ x]
Γ ` wf b : Πz : Level< k. B

E-ElimLvl

wf b k ≡ b k (λy. wf b y)
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7.2 Subtyping527

Because levels are now terms, subtyping necessarily involves typing to compare two levels. In528

particular, a universe at a smaller level is a subtype of a one at a larger level, while a level529

type bounded by a smaller level is a subtype of a one bounded by a larger level. The former530

is already expressed by rule Cumul, the latter by rule Trans. The additional benefit of531

subtyping making function domains contravariant and codomains covariant with respect to532

subtyping. Selected subtyping rules are given below, along with an updated rule Conv’ rule.533

S-Univ
Γ ` k : Level< `

Γ ` U k 4 U `

S-Level<
Γ ` k : Level< `

Γ ` Level< k 4 Level< `

S-Pi
Γ ` A2 4 A1 Γ, x : A1 ` B1 4 B2

Γ ` Πx : A1. B1 4 Πx : A2. B2

S-Trans
Γ ` A 4 B Γ ` B 4 C

Γ ` A 4 C

S-Conv
A ≡ B

Γ ` A 4 B

Conv’
Γ ` a : A Γ ` B : U k Γ ` A 4 B

Γ ` a : B

Although all of this subtyping behaviour holds semantically in our current model, proving534

logical consistency is not so easy. The simplicity of our logical relation relies on the535

independence of definitional equality from typing, along with its equivalence to conversion.536

By introducing a subtyping judgement that depends on typing, which in turn depends on537

subtyping, to prove consistency, the logical relation would need to include a semantic notion538

of equality, similar to the reducibility judgements used by Abel, Öhman, and Vezzosi [1].539

8 Conclusion and future work540

We have presented TTBFL, a type theory with first-class universe levels. In contrast to541

existing work, rather than level constraints being separate from the type of levels, we combine542

them such that every level explicitly has a bound. We have proven our type theory to be543

type safe, and in particular that subject reduction holds. This is in contrast to BCDE [3],544

the only other formal syntactic system we know of with universe level polymorphism beyond545

prenex polymorphism, which violates subject reduction. We have also proven our type theory546

to be logically consistent, and therefore useable as a logic for writing proofs.547

Proving normalization and decidability of type checking is the next step in showing548

that our type theory is effectively type checkable and thus has the potential to be a basis549

for theorem proving. Whether the extended logical relation presented in Section 6 can be550

repaired to prove normalization is unclear, as is whether well-typed terms are normalizing551

at all. Looking to existing work, BCDE proposes allowing looping level constraints of the552

form k < k to admit subject reduction, but this would also permit type-in-type in a looping553

context and violate normalization. Even so, we are hopeful that it holds, as no issues with554

cumulative first-class levels have yet arisen in Agda.555

Decidability of type checking does not hold straightforwardly from normalization, as a556

type checking algorithm must incorporate the non–syntax-directed rules Trans and Cumul.557

It may be done separately via algorithmic subtyping, but as seen in Section 7.2, a subtyping558

relation must depend on typing to show that one level expression is strictly smaller than559

another. The challenge lies in showing totality of a mutual typing–subtyping algorithm, but560

if looping level bounds k : Level< k are ruled out by normalization, there is no reason to561

believe it would not be total.562
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